لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 8
اجزای مدارهای کنترل و راه اندازی
کنتاکتور :
تا قبل از ساخته شدن کنتاکتور ، اتصالات توسط کلیدهای دستی انجام میگرفت که از انواع مختلف تیغه ای ، زبانه ای و غلطکی بودند که هر کدام مزایایی نسبت به هم دارند .
کلیدهای تیغه ای (اهرمی) :
دارای ساختمان بسیار ساده ای هستند و به صورت کشویی و گردان ساخته میشوند مقدار جریان قطع و وصل توسط این کلیدها بسیار محدود میباشد چرا که در جریانهای بالا قوص بین دو نقطه ایجاد شده و حتی موجب ذوب تیغه ها میشود و در هنگام وصل یا قطع نیز جرقه شدیدی ایجاد میکند .
کلید غلطکی :
ساختمان این کلیدها از یک استوانه عایق تشکیل شده است که توسط کلید حول یک محور به حرکت در می آید . در محلهای مناسب نوارهای هادی بر روی استوانه عایق تعبیه شده است . این کلید نسبت به کلید تیغه ای یک مزیت بزرگ دارد و آن هم اینکه میتوان برای این کلید کار مخصوصی را تعریف کرد و با یک حرکت چندین اتصال را به صورت هم زمان انجام داد .
کلید زبانه ای :
در کلید غلطکی به علت تماس اصطکاکی بین صفحات ، استهلاک کلید بالا است و به همین دلیل از کلید زبانه ای که دارای خصوصیت طراحی است و علاوه بر آن کنتاکتهای آن به صورت عمودی بر روی همدیگر قرار میگیرند استفاده میشود . به دلیل عدم مالش بین دو کنتاکت استهلاک کلید پایین است .
اما با به میدان آمدن کنتاکتور ها تقریباً تمام مصارف کلیدهای ساده از رده خارج شده و کنتاکتور با سرعت و اطمینان بیشتر این میدانها را به دست گرفت . کنتاکتور نسبت به کلیدهای ساده دارای خصوصیات بهتری میباشد که در ادامه آورده شده است :
1- فرمان از چند نقطه
2- فرمان از راه دور
3- تلفات و استهلاک پایین
4- سرعت و امکان گسترش مدار
5- قطع اتوماتیک در صورت قطع برق شبکه
6- اقتصادی بودن
7- امکان طراحی مدار اتوماتیک
8- از نظر حفاظتی کنتاکتورها مطمئن ترند و دارای حفاظت مناسبتر و کاملتر هستند . معمولا بوبین کنتاکتورها در چند ولتاژ مختلف جهت مصارف گوناگون ساخته میشود.
مشخصات پلاک کنتاکتور:
Ith2: جریان دائمی - جریانی است که می تواند در شرایط عادی از کنتاکتهای قدرت کنتاکتور و در زمان نامحدود بدون قطع عبور نماید.
Ith1: جریان هفتگی (قطع و وصل) - جریانی است که با اتصال یک بار در هر هفته از کنتاکتهای کنتاکتور بدون تاثیر در کارکرد کنتاکتور عبور نماید.
Ith: جریان شیفتی (هشت ساعته) - جریانی است که با اتصال یک بار در هر هشت ساعت از کنتاکتهای کنتاکتور بدون تاثیر در کارکرد کنتاکتور عبور نماید.
Ie: جریان نامی - جریان قابل تحمل برای کنتاکتهای اصلی
I1s: جریان اتصال کوتاه - مقدار جریانی است که کنتاکتها می توانند در زمان اتصال کوتاه تحمل نمایند.
Ve: ولتاژ نامی تحمل تیغه ها - مقدار ماکزیمم ولتاژی است که کنتاکتهای کنتاکتور در شرایط کار عادی می توانند تحمل نمایند.
Vi: ولتاژ عایقی بدنه کنتاکتور
Vc: ولتاژ تغذیه - مقدار ماکزیمم ولتاژی است که به بوبین کنتاکتور میتوان اعمال کرد.
طول عمر :
این مشخصه تعداد قطع و وصل های ضمانت شده را با ضرایبی که به اعدادی نسبت داده شده است بیان می کند .
استاندارد کنتاکتورها:
استاندارد آلمان VDE_DIN
استاندارد فرانسه UTE_NF
استاندارد انگلیس B.S
استاندارد کانادا G.S.B
بی متال:
برای حفاظت الکترو موتورها در مقابل اضافه بار بکار می رود. این قطعه از ویژگی میزان انبساط اجسام بهره میبرد . به اینصورت که انبساط در فلز مس بیشتر از روی میباشد و به همین علت وقتی این دو فلز با هم نورد شوند و کاملا با هم تماس داشته باشند باعث خم شدن قطعه تشکیل یافته از این دو فلز میشود و چون مقدار انبساط روی کمتر است خمش به سمت فلز روی خواهد بود .کنتاکتهای اصلی آن در مسیر عبور سه فاز اصلی و بعد از کنتاکتور قرار می گیرند. کنتاکت 95و96 در مسیر فرمان به بوبین کنتاکتور و بطور سری قرار میگیرد تا در موقع اضافه جریان کنتاکتور را قطع نماید.کنتاکت97و98 برای نمایش عملکرد بی متال (خبر) استفاده میشود .
مزایای بی متال نسبت به فیوز فشنگی :
1- در صورت بروز اشکال در یک فاز ، دو فاز دیگر به اضافه مدار فرمان از کار باز می ایستند .
2- هر چه شدت جریان بیشتر شود مقدار حساسیت بی متال نیز بیشتر خواهد شد .
3- در صورتیکه به صورت مداوم 10٪ اضافه بار وجود داشته باشد بی متال بعد از 2 ساعت مدار را قطع میکند .
4- اگر جریان به 10 برابر جریان نامی برسد در کمتر از 2 ثانیه مدار را قطع میکند .
فیوز :
مدار را در برابر اتصال کوتاه حفاظت میکند و در دو نوع تند کار (L) که در روشنایی استفاده میشود و شستی ها:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
دانشگاه آزاد اسلامی
واحد دزفول
موضوع :
بررسی کنترل ارتعاش محور های متوازن کننده و چگونگی نصب آنها در خودرو
استاد راهنما :
جناب اقای دکتر خورشیدی
تهیه کننده :
مهدی محمد پور
شماره دانشجویی : 80149272
بهار 85
فهرست مطالب
عنوان صفحه
فصل اول
بالانس دو صفحه ای یا دینامیکی……………………………………. ………………1
کنترل ارتعاشات ناشی از لنگی محورهای دوار……………………… ………………..1
بالانس موتورهای رفت و برگشتی…………………………………… ………..……2
کنترل ارتعاشات پیچشی……………………………………………………………3
کنترل فرکانس های طبیعی………………………………………………………….3
فصل دوم
مقدمه……………………………………………………… ………… ….…….4
منابع تولید ارتعاش………… …… ………………………………………….……4
ارتعاش خودرو و مسأله آسایش انسان …………………………………….…....….10
ارتعاش خودرو با یک درجه آزادی………………………………………………..…12
فصل سوم
مقدمه………………………………………………………………………….13
نصب شافت های متوازن کننده……………………………………………….….…16
فصل اول
روشهای کنترل ارتعاشات
2-1 بالانس دو صفحه ای یا دینامیکی
وقتی نامیزانی در بیش از یک صفحه ظاهر شود یک نیرو و یک گشتاور پدیدار می شود . همانطور که قبلاً گفتیم روش بالانس تک صفحه ای عبارت بود از بالانس روتورهای دیسکی شکل صلب،اگر روتور یک جسم طویل صلب باشد ، نامیزانی به شکل یک ارتعاش نسبتاً بزرگ در فرکانس متناظر با سرعت دورانی روتور ظاهر می گردد . در این حالت با افزودن جرم هایی در هر دو صفحه دلخواه می توان به موازنه دست یافت . برای راحتی معمولاً صفحات انتهایی روتور انتخاب می شوند . به طور کلی یک روتور بلند ، مانند آرمیچر موتور یا میل لنگ اتومبیل را می توان به صورت مجموعه ای از دیسکهای نازک ، هر کدام با مقداری نامیزانی در نظر گرفت . این روتورها را می توان چرخاند تا نامیزانی آن آشکار شود .ماشین هایی که برای آشکار سازی و تصحیح نامیزانی روتور به کار می رود ماشینهای بالانسینگ نامیده می شود . اصولاً ماشینهای بالانسینگ تشکیل شده است از یاتاقان های تکیه گاهی که روی فنر نصب می شوند به طوری که با حرکت آنها نیروهای نامیزان آشکار می شوند. با معلوم بودن دامنه هر یاتاقان و فاز نسبی آنها می توان نامیزانی روتور را تعیین و تصحیح کرد .
3-1 کنترل ارتعاشات ناشی از لنگی محورهای دوار
در بخش قبل سیستم روتور- شافت ، صلب در نظر گرفته شد ولی در عمل تمام محورهای دوار انعطاف پذیر هستند بنابراین تمایل دارند که در سرعت های معینی کمانش کرده و به طور پیچیده ای دچار لنگی شوند . لنگی می تواند به صورت دوران صفحه مابین صفحه خمیده شده و خط و اصل مرکز یاتاقان ها تعریف گردد . لنگی ناشی از عواملی است از قبیل نامیزانی، اصطکاک سیال در یاتاقان ها ، نیروهای ژیروسکوپی و استهلاک هیستریک در محور می باشد . لنگی می تواند هم جهت با چرخش محور یا در خلاف جهت آن روی دهد و سرعت چرخش می تواند مساوی با سرعت چرخش محور باشد یا با آن مساوی نباشد.
یک محور در حال گردش در سرعت های معینی ارتعاشات عرضی بیش از حدی از خود نشان می دهد. این سرعت با فرکانس های طبیعی سیستم متناظر می باشد و به سرعت بحرانی موسوم است و در این حالت تشدید رخ می دهد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 11
کنترل فعال نامتمرکز سازههای بلند با پسخور شتاب
چکیده:
پاسخ سازههای بزرگ مقیاس و بلند را میتوان با بهرهگیری از الگوریتمهای کنترل فعال مناسب و بکار بردن عملگرها در طبقات کاهش داد و استفاده از روشهای نوین کنترل جهت رسیدن به ترازهای ایمنی بالا در این راستا میباشد. در این مقاله روش کنترل نامتمرکز سازههای بلند با پسخور شتاب ارائه شده است. در روش کنترل نامتمرکز، یک سازه بزرگ به چند زیرسازه کوچکتر تقسیم شد و برای هر زیرسیستم، الگوریتم کنترل مخصوص آن استفاده میشود. زیرسیستمهای مختلف با یکدیگر همپوشانی داشته و در نقاط مشترک با یکدیگر تبادل اطلاعات خواهند داشت. الگوریتم مورد استفاده جهت کنترل سازه، الگوریتم کنترل بهینه لحظهای با بهرهگیری از پسخور شتاب بوده و در انتها یک نمونه عددی جهت الگوریتم پیشنهاد شده در این مقاله و بررسی نتایج آن با حالت کنترل متمرکز ارائه گردیده است.
واژههای کلیدی: کنترل، نامتمرکز، سازههای بلند، پسخور.
1) مقدمه
سازههای بلند از انواع سیستمهای سازهای میباشند که ضرورتاً در کنترل لرزشهای آن باید از کنترل غیرمتمرکز استفاده شود. این لرزشها میتوانند شامل دو دسته لرزشهای کلی و لرزشهای موضعی شوند. از طرفی با توجه به بزرگی این سازهها، مطمئناً بهرهگیری از یک مرکز کنترلی ارتعاشات برای این ساختمان منطقی نبوده و باید از چند مرکز کنترل ارتعاشات استفاده شود.
در سازههای بلند از چندین نوع سیستم باربر گرانشی و زلزله استفاده میشود که غیرمتمرکز کردن کنترل سازه تا اندازه زیادی به سیستم باربر جانبی بستگی دارد. در واقع بحث نامتمرکز کردن کنترل در ترازها، در جهت بالا بردن ایمنی کنترل ارتعاشات سازههای بلند بوده و در این حالت در صورت از کار افتادن یکی از مغزهای کنترل با سریسازی خودکار سیستم میتوان کنترل ارتعاشات سازه را به زیرسیستم سالم سپرد.
به طور کلی کنترل فعال (Active control) سازهها شامل دو بخش الگوریتمهای موردنیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند H2، H∞، کنترل مود لغزشی (Sliding Mode Control) و غیره از جمله الگوریتمهای بکار رفته در کنترل سازه میباشند.
کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، ونگ و دیویدسون (Wan g & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند. یانگ و همکاران (Yang et al) روش مود لغزشی را برای اینکه کنترل غیرمتمرکز سیستمهای بزرگ مقیاس، زیر اثر ورودی خارجی و با وجود عامل تاخیر زمانی در متغیرهای حالت ارائه کردند. طرح کنترل شامل یک قانون کنترلی غیرمتمرکز و یک فوق صفحه سوئیچینگ از نوع انتگرالی است. آنها ابتدا قانون کنترل غیرمتمرکز را به گونهای تعیین کردند تا شرایط رسیدن کلی (Global Reaching low) برقرار شود.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازههای فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهرهگیری از کنترل تطبیقی ساده غیرمتمرکز بحث کردهاند. رفویی و منجمینژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازههای بلند با بهرهگیری از کنترل بهینه لحظهای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترلکنندهها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهرهگیری از پسخور سرعت و دیگری کنترل با بهرهگیری از پسخور سرعت و جابجایی پرداختند.
منجمینژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازههای بلند، در ادامه به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترلکننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر میگیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد به پایداری سیستم را افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستمها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز میتواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستمها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل میتوان اطمینان بیشتری داشت.
در مقاله حاضر کنترل متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازهها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظهای (Instantaneous Optimal Control) میباشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پسخور شتاب جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و نمونههای عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شدهاند.
2) روابط حاکم
1-2) کنترل نامتمرکز و روابط وابسته
مدل ساختمان برشی در حالت دو بعدی درنظر میباشد. در این مدل هر طبقه به صورت یک درجه آزادی مدل میشود که به دو تراز بالا و پایین بوسیله یک فنر برشی و یک میراگر متصل شده است. مقالات زیادی در حوزه کنترل سازهها بر اساس این مدل نگاشته شدهاند. منجمینژاد و رفویی مدل سازهای را به صورت ساختمان برشی درنظر گرفته است و روابط مربوطه را بدست آوردهاند. در این حالت معادله دیفرانسیل حاکم بر رفتار دینامیکی یک مدل سازهای دوبعدی به صورت زیر است:
(1)
که در آن M ماتریس جرم، K ماتریس سختی، C ماتریس میرایی، H ماتریس موقعیت کنترلرها، U فرمان کنترلی، شتاب زلزله وارد بر ساختمان، بردار تغییر مکانهای طبقات و {1} بردار ستونی است که تمام مولفههای آن عدد یک میباشد. ماتریسهای رابطه به شرح زیر بوده و نحوه ریز کردن سیستم نیز مطابق شکل 1 میباشد.
شکل (1) مدل سازهای یک ساختمان بلند
(2)
n: تعداد طبقات ساختمان؛
r: تعداد کنترل کنندهها؛
ki: سختی برشی طبقه iام؛
mi: وزن طبقه iام.
در این روابط، xi را میتوان به دو صورت زیر تعریف کرد:
xire: جابجایی طبقه iام نسبت به یک دستگاه اینرسی (تغییر مکان اینرسی)
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
کنترل فعال متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با پسخورجابجایی و سرعت
*مهران فدوی، فیاض رحیمزاده رفویی2، سهیل منجمینژاد3
1. دانشجوی دکتری و عضو هیات علمی دانشگاه آزاد اسلامی واحد گرگان
2. استاد دانشگاه صنعتی شریف تهران
3. استادیار دانشگاه آزاد اسلامی واحد تهران مرکز
*. MehranFadavi@yahoo.com
چکیده
نیاز به ترازهای ایمنی بالاتر در سازههای بااهمیت، تامین پایداری و ایجاد محدودیتهایی در خصوص میزان لرزش به لحاظ احساس ایمنی ساکنین در سازههای بلند از اهداف اصلی طراحان و مهندسان عمران میباشد. در این گونه سازهها بکارگیری سیستمهای کنترل ارتعاشات سازهای به صورت فعال و غیرفعال مرسوم بوده و برخی از آنها نیز کاربردی شدهاند. در این مقاله کنترل متمرکز سازههای بلند تشریح شده و در خصوص نامتمرکز کردن این کنترل به گونهای که بر رفتار کلی سازه تاثیر مثبت داشته باشد، پژوهش گردیده است. در این پژوهش سازه به صورت سه بعدی مدل شده و الگوریتم کنترل فعال بهینه لحظهای، با پسخور جابجایی و سرعت جهت حل معادلات کنترل استفاده شده است. روابط حاکم بر پایداری سازه در حالت نامتمرکز و نوشتن الگوریتم حل معادلات به گونهای که پایداری سازه در کلیه حالتها برقرار باشد، بحث و اثبات گردیده و در انتها نمونههای عددی از حل روابط و معادلات حاکم با توجه به حالتهای گوناگون از نامتمرکزسازی کنترل در سازههای بلند ارائه شده است. یکی از حالتهای نامتمرکزسازی کنترل به تقسیم سازه اصلی با تعداد 3n درجه آزادی به زیرسازههایی با تعداد 3ni درجه آزادی گفته میشود که مجموع تعداد درجه آزادی زیر سازهها برابر با تعداد درجه آزادی سازه اصلی میباشد.
واژههای کلیدی: سازههای بلند، متمرکز، نامتمرکز، سه بعدی، پسخور
1. مقدمه
کنترل فعال (Active Control) سازهها به طور کلی شامل دو بخش الگوریتمهای مورد نیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای کنترلی متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتمهای به کار رفته در کنترل سازه میباشند. با توجه به تعریفهایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران شده است یک سیستم کنترل فعال شامل بخشهای زیر میباشد (شکل 1):
شکل 1: الگوریتم کلی کنترل فعال سازه در حالت کنترل متمرکز
سیستمهای کنترل را میتوان در دو دسته سیستمهای معمولی و سیستمهای بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستمهای معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستمهای ریزتر نمیباشد ولی در سیستمهای بزرگ مقیاس نظیر ساختمانهای بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمانها، به ویژه با توجه به اینکه نیروهای لرزهای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد میشوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود میآورد. بر این اساس تلاش میشود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم از تعداد معینی زیرسیستم (Subsystem) تشکیل میشود (شکل 2).
شکل 2: الگوریتم کلی کنترل فعال در حالت کنترل غیرمتمرکز با سه زیرسیستم
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازهای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، آقایان ونگ و دیویدسون (Wang & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 41
کنترل باد یا جریان هوا
جریانهای باد تاثیر مستقیم بر میزان تحمل درجه حرارت و رطوبت محیط زیست انسان دارد. نسیمی ملایم در روزهای گرم و مرطوب تابستانی لذتبخش است، ولی بادهای شدید و دائمی محیط نامطلوب ایجاد میکند. قرنهاست که از گیاهان برای کاستن شدت (بادشکن) باد استفاده میشود. میزان کاهش و تغییر جهت باد، بستگی به ارتفاع و تراکم و فرم و پهنای گیاهان کشت شده دارد، ولی ارتفاع گیاه مهمترین عامل تعیین کننده میزان حفاظت است.
استفاده از گیاهان و ایجاد بادشکن
با استفاده از گیاهان با ارتفاع ومکان متفاوت میتوان تشعشع نور خورشید را در طول مدت روز و یا تابش نور چراغها را در شب کنترل نمود.
با کشت درختان در مکان مناسب، از انعکاس این نور زننده به چشم ناظر ممانعت میشود.
تابش آفتاب بر پنجره
پنجرهها که ساختمان در تغییر دمای هوای داخلی آن تاثیر فراوانی دارند، مخصوصاً وقتی آفتاب به طور مستقیم به داخل بتابد، اثر حرارتی پنجره خیلی بیشتر از دیوارها بوده و فضاب داخلی بلافاصله پس از دریافت تابیش مستقیم آفتاب گرم میشود. در صورتی که ساختمان از مصالح ساختمانی سبک ساخته شده باشد، این افزایش گرما بیشتر محوس خواهد بود.
یکی از ویژگیهای معماری مدرن، استفاده زیاد از سطوح شیشهای در ساختمان است. این موضوع و همچنین استفاده روزافزون از مصالح ساختمانی سبک، باعث گردیده تغییر قابل ملاحظهای در رابطه بین وضعیت هوای داخلی یک ساختمان و هوای محیط اطرافش بوجود آمده و در تابستان گرمای بیش از حد در فضای داخلی اکثر ساختمانها حتی در مناطق معتدل و سرد ایجاد شود. مقدار اشعهای که بهطور مستقیم از شیشه عبور مینماید، به زاویه برخورد اشعه به سطح شیشه بستگی دارد. هرچه این زاویه از 45 درجه بیشتر شود، مقدار اشعه عبور یافته از شیشه کاهش مییابد و وقتی زاویه برخورد از 60 درجه بیشتر باشد، کاهش زیادی در مقدار اشعه عبور کرده از شیشه رویی داده میشود و مقدار اشعه منعکس شده از سطح شیشه افزایش مییابد.
تاثیر جهت پنجره
تاثیر جهت پنجره در دمای هوای داخلی یک اطاق به مقدار زیادی به وضعیت تهویه طبیعی در آن اطاق و وضعیت سایهبان بستگی دارد.
موقعیت پنجره و تاثیر آن در وضعیت تهویع طبیعی
موقعیت پنجره نسبت به جهت وزن باد تاثیر قابل ملاحظهای در وضعیت تهویه طبیعی در داخل یک اتاق میگذارد. اصل برای ایجاد یک تهویه موثر و قابل استفاده، این است که قسمتهای بازشو در دو سمت رو به باد و پشت به باد قرار داشته باشد. نتیجه آزمایشات و مشاهدات نشان داد که بدون تغییر تمام نقاط اتاق تحت تاثیر جریان هوا قرار گرفته و باد با یک حرکت دایرهای شکل در طول دیوارها و گوشههای اتاق به جریان میافتد. در صورتی که پنجرههای اتاقی در دیوارهای مجاور هم قرار داشته باشد، وضعیت تهویه طبیعی، زمان مطلوب خواهد بود که جهت وزش باد عمود بر سطح پنجره رو به باد باشد.
مشخصات اقلیمی گرگان
معدل
سال
درجه حرارت هوا
رطوبت نسبی
دی
5/12
4/3
8/7
79
64
5/71
بهمن
5/13
2/4
9
79
62
5/70
اسفند
1/15
1/6
7/10
5/82
65
75/73
فروردین
4/20
4/10
4/15
80
63
5/71
اردیبهشت
4/27
9/15
7/21
5/77
53
25/45
خرداد
1/31
8/19
5/25
75
50
5/42
تیر
5/32
5/22
6/27
76
52
64
مرداد
9/32
5/22
7/27
76
52
64
شهریور
6/29
3/19
5/24
77
55
66
مهر
7/24
1/14
4/19
81
5/57
25/69
آبان
6/19
7/8
8/13
5/81
60
75/70
آذر
2/14
2/5
8/9
79
64
5/71