لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 32
بسمه تعالی
اصول آرماتور گذاری ( پی ، دیوار، ستون )
نام استاد: مهندس صلاتی
گردآوری: احسان چهکندی – ایمان امینی نیا
بهمن 86
اصول کلی برای آرماتورگذاری و گره زدن
مقدمه
پوشش بتنی یا حفاظت
حدود مجاز در فاصلـه گذاری آرما تورها دردیوارها و دال های توپر
قاصله گذاری عرضی آرماتورها درتیرچه ها، تیرها و تیرهای اصلی
حدود مجاز در ارتفاع آرماتورهای فوقانی
حد مجاز در فاصله گذاری خاموت ها
ابزار و سیم گره
ابزار
اصول کلی گره زدن آرماتورها
آرماتورگذاری در پی ها، دیوارها و ستون ها
پی های منفرد مربعی یا مستطیلی
پی های طره ای یا مرکب
پی های دالی گسترده
بوشن های لوله ای
دیوارها
ستون ها
پیش مونتاژ قطعات مارپیچ
پیش مونتاژ قطعات خاموت
قطعات ستون درجا مونتاژ شده
فاصله گذاری خاموت های ستون
ارتفاع مارپیچ ها
همپوشی آرماتورهای اصلی ستون
نگه داری قطعات ستون
اصول کلی برای آرماتورگذاری وگره زدن
GENERAL PRINCIPLES FOR
BAR PLACING AND TYING
مقدمه
آماتورها باید با دقت و به طور دقیق ،منطبق با شرایط نقشه ها ، جداول و جزئیات کار گذاشته شوند. اغلب لازم است که بر روی نقشه های مهندس سازه کارهای معینی انجام بگیرد تا با جزئیات استاندارد خاص و توضیحات مطابقت کند .طراح جزئیات ، کلیه دستور
کارهایی که در این جزئیات وتوضحات وجود دارد را در نقشه کارگذاری آماتورها پیاده
می کند، این نقشه ها باید اقلام گوناگون آرماتور را به وضوح مشخص نمایند. به عنوان مثال باید نشان دهند که آرماتور بالایی است یا پایینی یا دور آرماتورهای دیگر قلاب می شود،همچنین باید نشان دهند که آرماتورها در کدام سمت یا نمای عضو سازه باید کار گذاشته شوند.آرماتورها باید طبق پلان در اطراف پوشن ها ، مغزیها ،سوراحها و بازشوها قرار بگیرند . سرکارگر آرماتوربندی و بازرس باید نقشه های مهندسی را کاملا بررسی کنند تا مطمئن شوند طراح جزئیات، توضیحات خاص و جزئیات نقشه های مهندسی را در نقشه کارگذاری در نظر گرفته است.
قبل از شروع کار سرکـارگر آرمـاتوربـندی این نکات را با بازرس و مـهندس تبـادل نظر مـی کند تا خاطرجمع گردد که درک روشنی از شرایط کار دارد.
مهندس ناظر کلیه کارهای آرماتوربندی را طبق نقشه ها و جزئیات قبل ازبتن ریزی کاملا بازدید نموده و در صورتی که نواقصی وجود داشته باشد به مسئول آرماتوربندی یا پیمانکار گزارش می
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 61
در بین فلزات ضروری برای زندگی آهن فراوانترین و مهمترین است که در تعداد بسیار زیادی از واکنش های بیوشیمی مصرف می شود. آهن وقتی با پورفیبرین ترکیب و داخل پروتین مناسب قرار گرفت . نه تنها بطور برگشت پذیری با اکسیژن پیوند می یابد و بلکه در تعدادی از واکنش های حیاتی اکسید اسیون ،احیاء شرکت می نماید چون آهن غیر آلی بسیار سعی است روندهای ویژه ای جهت جذب انتقال و ذخیره آن بکار می رود. تحت شرایط طبیعی هوموستار آهن بطور دقیقی حفظ می گردد ولی برخی حالات بالینی مختلف می تواند منجر به کمبود و یا افزایش پیش از حد شود .
حالات ،آهن فراوانترین عنصر از عناصری است که به مقدار بسیار کم در بدن وجود دارد . این عنصر در جداول در سنتز هموگلوبین به کار می رود . میزان آهن کل بدن 2500 میلی گرم می باشد که تقریباً ؟آن به صورت پیوند با مولکول «هم» می باشد برای تولید یک میلی متر لیتر گلبول سرخ ،یک میلی گرم آهن لازم است و روزانه 20 تا 25 میلی گرم برای خونسازی «هماتوپوئیزیس» مصرف می شود که 95 درصد این مقدار از طریق آهن حاصل از چرخه طبیعی گلبول سرخ و کاتابولیسم هموگلوبین بدست می آید. آهن جزء اساسی هموگلوبین ،میوگلوبین (در سلول های ماهیچه ای ) و بعضی از آنزیم ها (در اکثر سلول های بدن) است 3/2 از آهن تمام بدن یا بیشتر در اریترون (نورموپلاست ،اریتروسیست ها) است. هر میلی متر از گویچه های قرمز بدن حاوی حدود یک میلی گرم آهن است .
«جایگاه آهن در بدن انسان »:
هموگلوبین: بیشترین و مهمترین جایگاه آهن در بدن هموگلوبین است که بطور طبیعی حاوی 3 گرم آهن می باشد از نظر وزن هموگلوبین حاوی 34/.% آهن می باشد بنابراین 1میلی لیتر آهن است 1 میلی لیتر گلبول قرمز حاوی 1 میلی گرم آهن است اندازه جایگاه آهن در کم خونی و پلی سیتی یقین می نماید .
ذخیره آهن : آهن در بدن جایگاه به دو شکل وجود دارد شکل فری تین و هموزیرزین ،فری تین از پروتین آپومزی بوده است ،هموسیدرین غالباً در سلول های سیستم رتیکواندو تلیال وجود دارد . ولی تحت شرایط پالتولوژیک تقریباً بر مقدار زیاد در همه نسوج بدن انباشته خواهد شد . دانه های فری تین در هموسیدرین توسط میکروسکوپ الکترونی مشاهده شده ا ست . هموسیدرین در آب غیر محلول است و می توان آن را توسط میکروسکوپ در مقاطع بافتی رنگ شده و مغزاستخوان بصورت توده یا دانه هایی که دارای پیگمان با انعکاس طلائی است مشاهده نمود این دانه ها حاوی تقریباً 25 تا 30 درصد آهن بر حسب وزنشان می باشد .
میوگلوبین : میوگلوبین از نظر ساختمان ؟هموگلوبین بوده ، با این تفاوت که میوگلوبین مونومریک است . هر مولکول میوگلوبین مرکب از یک گروه «هم» بوده که توسط حلقه ای طویلی از رشته پروتئینی که مشتمل بر تقریباً 150 اسید آمینه می باشد احاطه شده است وزن مولکولی آن 17000 و 34/.% وزنش آهن است مقدار کمی میوگلوبین در تمام اسکلت و سلول های عضله قلب موجود بوده که بعنوان انتقال دهنده اکسیژن بکار می رود تا بر ضد ضایعات سلولی که در طول محدوم سازی اکسیژن رخ می دهد .عمل محاظت را انجام دهد.
محل یا مخزن ناپایدار آهن: مخزن ناپایدار آهن تصوری است که از مصالعات کینتیک آهن بدست آمده است . زمانی که آهن پلاسما را ترک می کند بنظر می رسد با ترکیبات واسطه ی که احتمالاً پروتینی است پیوند قابل برگشت در سطح غشاء یا درون نورموپلاست که در حال ایجاد است .
جایگاه آهن در نسوج : آهن پارانشیمال یا نسوج بطور طبیعی مقدارش 6 تا8 میلی گرم است این آهن شامل سیتوکروم ها ، انواع مختلف آنزیم ها می باشد ، اگر چه جایگاه کوچکی است ولی یکی از جایگاههای بی نهایت حیاتی است .
جایگاه انتقالی : در حدود 3 میلی گرم است و آهن در آن جا دارای ترن اوراست زیرا فعال ترین جایگاه است . که حداقل ده بار در هر 24 ساعت انجام می گیرد . جایگاه انتقالی راه واسطه ای نیز می باشد زیرا بدان و سیطه آهن در جایگاه های دیگر می تواند مبادله گردد. آهن انتقالی با پروتین های خاصی بنام ترانسفرین پیوند می شود . که یکی بتاگلوبین بوده که در حدود 80000 وزن مولکولی دارد . در هر یک باز انشعای مولکول گلیکوپروتین کروی قرار گرفته که در هر یک از این محل ها یک اتم سه ظرفیتی می تواند پیوند شود یا بعبارتی دیگر بر روی دو محل مذکور مکان خاص پیوند آهن اشغال شده است .
توزیع ترکیبات آهن دار :
پروتین های آهن دار بر دو دسته «هم» heme و غیر هم nanheme not heme تقسیم می شود . آهن وابسته به «هم» در کمپلکس پورفیرین – آهن داخل می شود و شامل آهنی است که در هموگلوبین مأمور حمل اکسیژن است مقداری نیز در میو گلوبین و کاتالاژها و پر اکسید ازهای خاص و پروتین های حامل اکسترون سیتو کرمی وارد می گردد. قسمت «غیر همی » شامل پروتین هائی است که دارای ترکیباتی با تعداد زیادی باندهای آهن گوگردی می باشد مانند فلاومتالو پروتین ها ،گزانتین اکسید از الدهید دهیدروژ تاژ و مواد دیگری که اغلب به زنجیره تنفسی متصل اند این گروه شامل ترانسفرین (حامل آهن) ،لاکتوفرین و مزتین (پروتین های ذخیره کننده آهن ) می باشد .
نقش عمده ی آهن در پستانداران حمل O2 بعنوان قسمتی از پروتین هم و در حقیقت به عنوان قسمتی از هموگلوبین می باشد O2 همچنین به پروتین هم عضلانی میوگلوبین متصل است . بدون آهن سلول ها قابلیت انتقال اکسترون و متابولیسم انرژی خود را از دست می دهند و در ساخت هموگلوبین سلول های خونی قرمز اختلال ایجاد می شود که منجر به کم خونی و کاهش انتقال O2 به بافت ها می گردد.
آهن هم در افراد طبیعی 20 تا 30 درصد و در افراد مبتلا به فقر آهن 40 تا50 درصد جذب می شود جذب آهن غیر ه مپروسید میزان محلول بودن آن درقسمت بالای روده کوچک تحت تأثیر قرار می گیرد . که بر شدت بر تعادل مهار کننده اما افزایش دهنده های جذب بستگی دارد. بخشی از آهن غیر هم از آلودگی در حین تولید مواد غذایی حاصل می شود. مثال استفاده از ظروف آهنی برای پخت برای تمیز و یا محیط با ؟ پایین این آهن به راحتی حل نمی شود. اگر چه سهم قابل توجیهی از آن احتمالاً برای جذب در دسترس خواهند بود.
جذب آهن:
جذب غالباً در دئودنوم و ژژنوم فوقانی انجام میشود. سلول های روده ا ی فقط به اندازه جبران آهن دفع شده آهن جذب می کنند به طور طبیعی 10% از 20-10 آهنی که روزانه در رژیم غذایی معمولی خورده میشود جذب می گردد هم بسیار سهلتر از آهن غیر آلی جذب می شود. متاسفانه کمبود گوشت در غذای بسیاری از مردم سراسر جهان ،دسترسی به این منبع بسیار خوب را محدود کرده است .
مقدار آهن جذب شده به عوامل زیر بستگی دارد . 1- مقدار و نوع آهن موجود در غذا 2- وجود و یا عدم منابع دیگر مواد غذایی 3- وضع اسیدیته معده 4- ترشحات لوزالمعده 5- وضع ذخیره آهن بدن 6-فعالیت مغز استخوان 7- وضعیت یافته های روده .
تنظیم مقدار جذب آهن با اوپتیموم و پتانسیل احیای آن است در صورت کمبود شدید آهن بدن می تواند قدرت جذب خود را تا 30% بالا ببرد تا بتواند جبران کمبود آهن را بکند آهن فقط به صورت مزوس دارای فعالیت بیولوژیکی است ( Fe++) . به طور طبیعی حالت اسیدی (یا PH پایین ) باعث تسهیل تبدیل آهن به صورت قابل جذب آن می شود در حالیکه خنثی و قلیایی ایجاد آهن به شکل مزیک (Fe+++) می کند و جذب را کاهش می دهد .
احتیاجات آهن : برای سنتز طبیعی هموگلوبین و سایر پروتین های آهن دار بدن باید مقدار کمی آهن از طریق مخاط روده جذب گردد برای مردان بالغ و طبیعی مقدار آهن جذب شده معادل همان مقداری است که اکثراً از طریق مدفوع دفع می شود . این مقدار تقریباً 1 میلی گرم در روز است در طول دوره رشد و یا وقتی که خون از دست داده شود نیاز به آهن بیشتر نیاز دارد .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 87
مراحل کار فتوگرامتری برای تهیه نقشه
طراحی و انجام پرواز برای عکسبرداری:
عکسبرداری به سبب اینکه عکس های مورد نیاز برای تهیة نقشه یا اندازه گیریهای در این دهه تهیه می شوند و نیز دارا بودن بالاترین هزینة (شامل هزینة هواپیما، مخارج و گروه پرواز و …) از مهمترین مراحل کار فتوگرامتری است که باید به طور دقیق و صحیح برنامه ریزی و اجرا شود تا هم با پیشگیری از تکرار عکسبرداری هزینه به حداقل برسد و هم با تهیه عکسهایی با شرایط هندسی و مقیاس مناسب و کیفیت، بتوان به دقت خواسته شده دست یافت. برای انجام عکس برداری ، مسیر حرکت هواپیما، موقعیت ایستگاههای عکسبرداری و سرعت هواپیما با توجا به نوع نقشه، دقت خواسته شده و نوع منطقه مورد نظر برای عکسبرداری و شرایط محیطی از قبل تعیین و بر روی نقشه ای پیاده می شوند که به آن راهنمای اندکس پرواز می گویند.
نقشه راهنمای پرواز در اختیار اکیپ پرواز و عکس برداری قرار داده می شود تا پرواز در امتداد و شرایط تعیین شده انجام می شود و عکسبرداری نیز در موقعیت های مناسب در نظر گرفته شده طبق شرایط هندسی انتخاب شده صورت می پذیرد .
2-1) تهیه اندکس پرواز:
تعریف اندکس عکسی: تهیه اندکس عکسی یعنی رسم نوارهای پرواز و مشخص نمودن
مراکز عکس برداری بر روی این نوارها در مقیاس چهار یا پنج برابر کوچکتر از مقیاس اسمی عکسبرداری.
هدف از تهیه اندکس (راهنمای پرواز):
هدف از تهیه اندکس عکسی ایجاد یک دید کلی بر روی کلیه نوارهای پرواز شده می باشد. بگونه ای که به کمک آن بتوان از وضعیت پرواز تعداد و موقعیت نسبی عکس های تهیه شده و وجود فضاهای خالی احتمالی بین نوارهای پرواز اطلاع یافت. لازم به ذکر است طراحی نقاط کنترل زمینی مورد نیاز هر بلوک فتوگرامتری (جهت آنجام مثلث بندی هوایی) به کمک اندکس مذکور و با مشخص نمودن حد کار بر روی آن انجام می پذیرد.
3-1 ) تعیین مسیر پرواز و پوشش عکس ها:
الف) مسیر پرواز: برای اینکه عکس های برداشت شده کامل منطقة مورد نظر را بپوشاند منطقه را به بازیابی موازی تقسیم می کنند. هواپیما پرواز را در مسیر خطی مستقیم و افقی و موازات محور با نراول آغاز می کند. کمی قبل از ورود به محدوده منطقه عکس برداری شروع و همچنانکه ارتفاع هواپیما در مسیر پرواز تعیین شده به پیش می رود در فواصل مشخص عکس برداری می شود. پس از خارج شدن از منطقه باز هم عکس برداری ادامه می یابد یا بیرون از حد منطقه از هر طرف چند عکس در دست باشد. با اتمام عکسبرداری باند اول هواپیما دور می زند و باند دوم از منطقه در حالیکه پرواز در خطی مستقیم و افقی موازی با محور پرواز باند اول و بفاصله تعیین شده از محور پرواز باند ماقبل ادامه می یابد و عکس برداری به همین صورت تا آخر گرفته می شود.
ب) پوشش عرضی: برای اینکه منطقه ای به طور کامل توسط عکسها پوشیده شود باید عکسهای هر باند پرواز با عکسهای باندهای مجاور در قسمتی از منطقه مشترک باشد تا در اثر بروز عواملی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
مین به عنوان سلاحی انفجاری برای حفاظت از مناطق ویژه مثل مرزها و یا محدود کردن حرکت دشمن (در مناطق جنگی) و در دو نوع کلی زمینی و دریایی، از جمله قدیمی ترین حربه های نظامی به شمار می رود که هنوز جایگاه خود را در ارتش های جهان از دست نداده، بلکه به طراحی های جدید نیز تن داده است. سابقه استفاده بشر از اشکال نخستین این سلاح به رم باستان بازمی گردد، زمانی که سربازان رومی بر سر راه دشمنان حفره های کوچکی به اندازه یک کف پا کنده و در آنها میخ های تیز پر می کردند، سپس روی حفره ها را می پوشاندند. اروپایی ها در قرون وسطی گودال های کوچکی کنده و داخل آنها میخ های چهار شاخی به نام «کالتروپ» می ریختند تا حرکت صفوف دشمن را مختل کند.
بر پایه بعضی متون تاریخی، شخصی به نام «ژوگ لیانگ» از پادشاهی «شو» در چنین (قرون سوم میلادی) گونه ای از مین های زمینی را اختراع کرد که قابلیت انفجاری داشتند. متون دیگری نیز حاکی از استفاده چینی ها از مین های زمینی انفجاری علیه حملات مغول ها در سال 1277 پس از میلاد هستند.
در حدود قرن چهارده یا پانزده میلادی، سلسله مینگ موفق شد گونه مدرن تری از مین را که با پودر سنگ و باروت ساخته می شد، به کار گیرد. در سال 1573 در شهر آگزبرگ (جنوب آلمان، مرکز باواریا) یک مهندس نظامی به نام ساموئل زیمرمان نوعی مین انفجاری موسوم به «فلادرماین» را اختراع کرد که قدرت انفجاری بسیار زیادی داشت. این گونه مین تا اواخر قرن 19 کاربرد گسترده ای داشت که از جمله موارد استفاده آن می توان به جنگ های داخلی اروپا در قرن 18، انقلاب آمریکا (استقلال طلبان) و جنگ شمال و جنوب (جنگ داخلی آمریکا) اشاره کرد. نخستین نوع مین های انفجاری ضد نفر که به لحاظ مکانیکی بسیار مدرن بودند توسط نیروهای ژنرال گابریل رینز در جریان نبرد «یورک تاون» در سال 1862 ساخته شد. این مین ها به فیوز برقی مجهز بودند و از قابلیت انفجار کنترل شده (از راه دور و با نیروی اپراتور خودی) برخوردار بودند. ارتش آلمان در جنگ جهانی اول موفق شد طراحی های مدرن تری از این مین های فیوزدار را ارائه کند.
در مقابل انگلیسی ها نیز دست به کار ساخت نوعی از مین های زمینی شدند که حاوی گازهای سمی بود و می توانست علاوه بر نیروی نابودکننده حاصل از انفجار، شمار دیگری از سربازان را مسموم کند. نیروی تخریبی این مین ها آن قدر بالا بود که اتحاد جماهیر شوروی تا دهه 80 نیز به تولید آن مبادرت می ورزید. مین های شیمیایی در ادامه راه را برای تولید مین های هسته ای هموار کردند که در حال حاضر در ارتش بریتانیا و آمریکا ساخته می شوند. با توجه به تاریخچه مختصری که از اختراع و کاربرد مین ذکر شد، می توان انواع مین های زمینی را که در ارتش های کنونی رایج هستند به این شرح تقسیم کرد؛ 1 - مین های ضدخنثی که در صورت مبادرت دشمن به خنثی، منفجر می شوند و به هیچ وجه قابلیت خنثی شدن را ندارند. 2 - مین های ضد تانک 3 - مین های ضد نفر 4 - مین های جنگی مقابله با استفاده از مین های زمینیبه دنبال تلاش های مستمر سازمان بین المللی ICBL (مخفف عبارت مقابله بین المللی با استفاده از مین های زمینی، شبکه ای است متشکل از 1200 سازمان غیردولتی در 60 کشور جهان که در سال 1992 تاسیس شده) در تاریخ 1 مارس 1999 معاهده ای در اتاوای کانادا امضا و به اجرا درآمد که به معاهده اتاوا مشهور شد و منع تولید و استفاده از مین های ضدنفر را مد نظر قرار می داد.
اگرچه در متن این معاهده به مین های ضدتانک و یا دیگر انواع مین های انفجاری اشاره ای نشده بود و از این لحاظ، اقدامی ناقص به شمار می آمد اما نخستین تلاش جهانی و رسمی برای مقابله با آثار استفاده از این گونه تسلیحات نظامی در ارتش های دنیا بود. معاهده اتاوا در ابتدا به امضای 122 کشور رسید و در ادامه شمار امضاکنندگان به 153 کشور ادامه یافت. اما هنوز 40 کشور دیگر مدنظر معاهده هستند که به امضای آن تن نداده اند.تولیدکنندگان مین های زمینیبراساس گزارش سازمان ICBL در اوت 2004، یازده کشور (که هیچ کدام معاهده اتاوا را امضا نکرده اند) جزو تولیدکنندگان اصلی مین های زمینی به شمار می روند. این کشورها عبارتند از؛ کوبا، هندوستان، ایران، عراق، میانمار، نپال، کره شمالی، پاکستان، فدراسیون روسیه، سنگاپور و ویتنام. در گزارش یاد شده همچنین آمده است؛ ترکیه پس از امضای معاهده اتاوا تولید مین های زمینی را متوقف کرده، مصر به طور غیررسمی اعلام کرده که تولید مین را از سال 1988 متوقف کرده، آمریکا از سال 1997 دیگر مین های ضد نفر را تولید نمی کند (اما در یک بیانیه دولت آمریکا در فوریه 2004 اعلام شد که آمریکا توسعه مین های ضد نفر و ضد تانک را ادامه خواهد داد).
کره جنوبی اعلام کرده که از سال 2000 هیچ گونه مینی را تولید نکرده است. چین در سپتامبر 2003 به طور رسمی خبر از توقف تولید مین های زمینی را داد. در مارس 2004 یک مقام لیبیایی اظهار داشت که لیبی هرگز به تولید مین های ضد نفر مبادرت نورزیده. پرو نیز اعلام کرده که از ژانویه 99 تولید مین را متوقف کرده است و دانمارک نیز پس از امضای معاهده اتاوا تولید مین را متوقف ساخته است.
فاماس
سلاح فاماس در سال 1967 توسط یک مهندس اسلحه فرانسوی بنام Paul Tellie طراحی شد.
هدف از طراحی این سلاح جایگذینی آن با تفنگ نیمه اتوماتیک Mas Mle.49/56 و مسلسل دستی MAT- 49 و MAC Mle.1929 بود.اولین نمونه این تفنگ در سال 1971 ساخته شد و برای آزمایش به ارتش فرانسه تحویل داده شد.در آن زمان ارتش فرانسه مدلی از مسلسل ساخت کشور سوئیس را بکار میبرد . این مسلسل با کالیبر 56/5 ساخت کارخانه SIG بود و با کد SG – 540 شناخته می شد .در سال 1978 سلاح FAMAS در مقیاس 400 هزار قبضه تولید شد.پس از آن یک شرکت فرانسوی بنام GIAT دست به تحول این سلاح زد و نمونه جدیدی از آن را با کد G1 معرفی کرد.این سلاح دارای محفظه ماشه بزرگی بود که کل دست در آن جای می گرفت.همچنین روپوش لوله آن از جنس پلاستیک ساخته شده بود.البته مدل G1 یک نمونه آزمایشی بود و در سال 994 مدل G2 به عنوان مکمل آن مرفی شد که از خشاب مورد استفاده در سلاح M – 16 (نوع کوتاه آن) بهره می گرفت.این سلاح در طیف نسبتا وسیعی توسط نیروی دریایی و زمینی فرانسه استفاده شد و تعدادی از آن به کشورهایی مانند امارات متحده و سنگال صادر شد.شکل کلی این سلاح مبنایی برای طراحی سلاح FELIN خواهد بود که از فرانسویان هنوز از آن پرده داری نکرده اند.مدل لوله کوتاه این سلاح با طول 320 میلیمتر برای نبردهای چریکی ساخته شده است.مدل Commando آن دارای طول لوله 405 میلیمتر و گونه مخصوص آن برای تکتیراندازی دارای طول لوله 620 میلیمتر می باشد.نمونه ای که برای مقاصد تکتیراندازی ساخته شده دارای دوربین مخصوص ، دوپایه و دستگیره حمل مخصوص می باشد .سلاح فاماس در جنگ خلیج فارس با موفقیت استفاده شد و توانست ضریب اطمینان بالا و کیفیت قابل قبول خود را به اثبات برساند.
توضیحات فنی
این سلاح از نوع bull pup می باشد یعنی خشاب آن در قسمت انتهایی سلاح و پشت قبضه تپانچه ای نصب می شود.
در ساخت این سلاح از پلاستیک به وفور استفاده شده.این سلاح از سیستم گلنگدن تاخیری اهرمی استفاده می کند که از سلاح AAT_ 52 به عاریت گرفته شده ( البته مخترع این سیستم شخصی مجارستانی به نام Paul de kilary می باشد که این سیستم را قبل از جنگ جهانی دوم طراحی کرده ).
گلنگدن سلاح از نوع بسته می باشد.وقتی گلوله شلیک می شود ، فشار گاز باروت باعث می شود تا فشنگ به پیشانی جنگی فشار وارد کرده و آن را به عقب هل دهد.زمانی که هنوز فشار گاز باروت بالا می باشد ، اهرم تاخیر حرکت کوتاه گلنگدن را به قسمت سنگین تر گلنگدن که حرکتی طولانی تر دارد انتقال می دهد که این عامل باعث ایجاد تاخیر در باز شدن گلنگدن می شود.
نام اسلحه : اف ان اس پی آر ( اسلحه مخصوص پلیس ) تصویر سلاح ======= و توضیحات در مورد سلاح -------------------------- Name: FN Special Police Rifle - SPR نوع اسلحه : تک تیرانداز ( اسنایپر ) Type: Sniper Rifle کالیبر : 51 × 7.62 میلی متر ناتو Calibers: 7.62x51mm NATO وزن : 4.9 کیلوگرم ( تا 7.5 بسته به ورژن اسلحه ) Weight: 4.9 kg - 7.5 kg depending on version طول اسلحه : 1120 میلی متر ( 44 اینچ ) Length: ~1120 mm (44") طول لوله : 610 میلی متر ( 24 اینچ ) Barrel Length: 24" (610mm) برد مؤثر : 700 الی 800 متر Effective range: 700-800 meters ظرفیت خشاب : چهار فشنگ ( از نوع جعبه ای جدا شونده ) Feed Mechanism: 7.62x51/.308 - 4 rounds in detachable box magazine این اسلحه برای اولین بار توسط شرکت اف ان هرستال بلژیک (FN Herstal ) ساخته شد ولی امروزه شرکت یو اس ریپیتینگ آرمز ((US Repeating Arms Co (USRAC ) در آمریکا مشغول ساختن آن است . در حال حاضر اداره تجسس فدرال ( اف بی آی ) (Federal Bureau of Investigation (FBI) ) این اسلحه را برای تیمهای تک تیرانداز ( اسنایپر ) خود بکار می گیرد . مسلح کردن در این سلاح بوسیه عملکرد گلنگدن است و برای هر شلیک باید یک بار گلنگدن را کشید . خشاب معمولی در این اسلحه از نوع پنج تایی جعبه ای جداشونده است ولی در انواعی مدل پنج فشنگی و سه فشنگی متصل نیز وجود دارد . طول اسلحه نیز بسته به طول لوله ممکن است متفاوت باشد و در مدلی که طول لوله 20 اینچ است ، طول اسلحه 5 میلی مترکاسته شده و 1015 میلی متر می شود . ورژنهای مختلف این اسلحه آ1 ، آ1آ ، آ2 ، آ3 ، آ4 و آ5 هستند .
نام اسلحه : کدر ( کلین ) تصویر سلاح ======= و توضیحات در مورد سلاح --------------------------
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 28
سازه های متداول برای ساختمانهای بلند
مقدمه:
اهمیت اثر نیروی جانبی با بالا رفتن ارتفاع ساختمان با سرعت زیادی افزایش می یابد. در ارتفاع معینی تغییر مکان جانبی ساختمان چنان زیاد می شود که ملاحظات سختی کنترل کننده طرح می گردند تا اینکه مقاومت مصالح سازه ای . درجه سختی اساسا بستگی به نوع سیستم سازه دارد . بعلاوه بازده هر سیستم خاصی مستقیما با مقدار مصالح مصرف شده ارتباط دارد.بنابراین از بهینه کردن سازه برای شرایط فضایی معینی باید با حداقل وزن حداکثر سختی حاصل شود . این عمل منجربه ابداع سیستم های سازه ای مناسب برای حدود ارتفاعات معین میگردد. بعضی از عواملی که در توسعه این سیستم های تازه نقش مهمی داشته اند عبارتند از:
مصالح سازه ای با مقاومت زیاد.
عمل مرکب بین عناصر سازه ای ساخته شده از دو یا چند نوع مصالح.
روش های جدید اتصال قطعات.
تخمین رفتار پیچیده سازه ها به وسیله ماشین های حسابگر الکترونیک(کامپیو تر).
استفاده از مصالح ساختمانی سبک تر.
روش های اجرایی جدید.
در بخش های زیر متداول ترین سیستم های سازه ای مورد بحث قرار می گیرند.در این بحث ها طرح های هندسی نمونه،رفتار سازه ها تحت بار گذاری،و بازده سیستم ها مورد تأکید می باشند.
سازه دیوار باربر
سازه هسته برشی
سازه تیر دیواری
سازه دیوار باربر
از لحاظ تاریخی سازه های ضخیم و سنگین ساخته شده از مصالح بنایی بوده اند.وزن زیاد و انعطاف ناپذیری آنها در طرح افقی باعث عدم استفاده مؤثر از آنها در ساختمان های بلند گردید.اما پیشرفت تکنولوژی جدید در استفاده از مصالح بنائی مهندسی ساخته شده و قطعات بتنی ساخته مفهوم دیوار باربر را برای ساختمان های با ارتفاع متوسط اقتصادی ساخته است.
این سیستم برای انواعی از ساختمان ها که در آنها تقسیمات مکرر فضا لازم است مانند آپارتمان ها و هتل ها قابل استفاده می باشد. روش دیوار باربر برای انواع طرح و شکل ساختمان ها مناسب است.نقشه های افقی این طرح ها از شکل های مستطیلی ساده تا شکل های دایره ای و مثلثی متغییر می باشند.
سازه های دیوار باربر عموماً شامل مجموعه ای از دیوارهای خطی می باشند.بر اساس نحوه قرار گرفتن این دیوارها در ساختمان آنها را می توان به سه گروه اصلی تقسیم نمود:
سیستم دیوار عرضی که شامل دیوار های خطی در امتداد عمود بر طول ساختمان می باشد و در نتیجه مانع نما کاری نمای اصلی نمی گردد.
سیستم دیوار طولی که شامل دیوارهای خطی موازی طول ساختمان می باشد این رو دیوار نمای اصلی را تشکیل می دهد.
سیستم دو طرفه که شامل دیوارهای موازی عرض و طول ساختمان می باشد.
همچنبن ممکن است ساختمان را بطور مشخصی به قسمت های سازه ای مختلف تقسیم کرد بطوریکه هر قسمت سیستم دیوار جداگانه ای را به کار ببرد.
ترتیب قرار گرفتن دیوارها که در اینجا بحث شد در مورد ساختمان های مستطیلی ممکن است به وضوح قابل بیان باشد،اما در مورد ساختمان های با تصاویر افقی پیچیده تر طبقه بندی کردن ممکن است تا حدودی مشکل باشد.
رفتار سازه دیوار بار بر تحت بار گذاری بستگی به مصالح مصرف شده و نحوه اثر متقابل صفحه افقی کف و صفحه قائم دیوار دارد.به عبارت دیگر این رفتار تابعی از درجه پیوستگی(اتصال) دیوارها به یکدیگر و به دال های کف می باشد.اتصال سازه کف به دیوارهای پیوسته را باید مفصلی تصور کرد.(با فرض هیچگونه سیستم اتصال خاصی بکار نرفته باشد)،در صورتی که در ساختمان های بتنی در محل ریخته شده ،دال هاو دیوارها بطور واقعی متصل و پیوسته هستند. واضح است که ساختمان بتنی در محل ریخته شده ،با توجه به رفتار سه بعدیش،خیلی سخت تر از ساختمان ساخته شده ار مصالح بنائی یا قطعات پیش ساخته مفصلی می باشد و این نکته بتن را برای ساختمان های بلندتر اقتصادی می سازد.
بارهای قائم با ایجاد خمش از سازه کف مستقیما به دیوارها انتقال می یابند.دهانه های متداول کف ها (یعنی فاصله بین دیوارها ) بسته به ظرفیت حمل بار وصلبیت جانبی سیستم کف و عوامل دیگر بین 12 تا 25 فوت متغیر می باشند.چون دیوار بارها را خیلی شبیه به یک ستون باریک و عریض مقاومت می کند پایداری آن در مقابل کمانش باید کنترل گردد.
تنش های فشاری در دیوار تابعی از دهانه کف،ارتفاع و نوع ساختمان ،و اندازه و ترتیب سوراخ های دیوار(برای در و پنجره و غیره)می باشد. سوراخ های دیوار باید روی یک محور قائم قرار داده شود تا از تمرکز و ترکیب تنش ها در اثر ترتیب متناوب پنجره ها اجتناب گردد.
کف هایی که بصورت خارج از مرکز به دیوارها متصل می باشند لنگرهای خمشی ایجاد می کنند که دیوار باید آنها را نیز مقاومت کند.
نیروهای افقی به وسیله سازه کف که مانند دیافراگمی افقی عمل می کند به دیوارهای برشی موازی امتداد نیرو توزیع می شود. ین دیوارهای برشی به دلیل صلبیت زیاد شان مانند تیرهای با عمق زیاد عمل می کنند و در مقابل برش،خمش و واژگونی مثل آن واکنش نشان می دهند.
در مقابل نیروی باد موازی با جهت کوتاه ساختمان،دیوارها در سیستم دیوار عرضی نه فقط بارهای وزن را تحمل می کنند بلکه در مقابل برش ناشی از باد نیز مقاومت می نمایند. از طرف دیگر سیستم دیوار طولی این دو وظیفه دیوارها را هم جدا می کند. دیوارهای طولی بارهای وزن را تحمل می نمایند و نیروهای باد را به صورت خمش موضعی به دیافراگم کف یا مستقیما به دیوارهای برشی واقع در وسط یا دو انتهای ساختمان منتقل می کنند.
در مورد اثر باد روی ضلع کوتاه ساختمان که اهمیت کمتری دارد، دیوارهای باربر در سیستم دیوار طولی اکنون به صورت دیوار های برشی نیز عمل می کنند. در سیستم دیوار عرضی دیوارهای برشی را ممکن است در امتداد کریدور مرکزی قرار داد. در ساختمان های بتنی در محل ریخته شده، پایداری در اثر رفتار یکپارچه سیستم کف-دیوار که مانند یک واحد صندوقی با خمش واکنش نشان می دهد تامین می گردد.