لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 62
محاسبات پخش بار و اتصال کوتاه با نرم افزار Power Factory DIgSLIENT
-(1 Load Flow :
مدار 6 شینه شکل زیر را ببندید والمانهای قدرت را براساس شکل نامگذاری کنید.
پس ازتکمیل شدن شماتیک تک خطی سیستم قدرت اطلاعات مربوط به تک تک المانها راازطریق کلیک دوبل یاData Manager وارد می کنیم.
برای شروع,اطلاعات مربوط به ترمینال هارامطابق جدول زیروارد می کنیم .
(فقط کافی است داده هایی که لازم وقابل تغییر میباشند راتغییردهیم بقیه مقادیردرحالت پیش فرض صحیح می باشند)
تمام ترمینالهای شبکه 400کیلوولت وسه فاز متناوب هستند.
-اطلاعات مربوط به تنها باس بارشبکه به صورت زیراست:
اطلاعات مربوط به ژنراتورهاارطریق دابل کلیک روی تک تک آنهاوانتخاب گزینه New Project Type برای نوع ژنراتوروسپس ورود اطلاعات دربرگه مختلف آن شامل EMT ,RMS مطابق جدول زیر امکان پذیر است:
اطلاعات فوق مربوط به مشخصات طراحی انواع ماشینهای سنکرون میباشد واطلاعات مربوط به استفاده این ژنراتورها دراین شبکه برای نقطه کارمطلوب بصورت زیردربرگه Load Flow Data است:
مقادیروکمیتهای مربوط به خطوط نیزباایجاد New Project Type وانتخاب گزینه Line type وانتخاب New Project Type وویرایش این خطوط مطابق جداول زیربرای Basic Data و Load Flow Data انجام می گیرد:
اطلاعات مربوط به طول خطوط بصورت زیراست :
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 74
مقدمه این نخستین بار است که به گونهای تخصصی به معرفی حیطههایی که «معماری منظر» را در بر میگیرد، پرداخته میشود. بدین لحاظ از قانون عام خطاپذیر بودن، بویژه در تجربة اول نمیتوان مستثنا بود. محتوای این مقاله ضمن توجه به پارهای از مطالب نو در معماری منظر، مطالب مقدماتی این حرفه را نیز در بر دارد. از این رو بخشی از مطالب به بیان مفاهیم معماری منظر میپردازند، و بخشی دیگر پا فراتر میگذارند. یکی از موضوعهایی که در این عصر نگرانیهای جدیای به دنبال داشته است، رابطة رو به زوال انسان و طبیعت است. طبیعی که به سان گاهوارهای، انسان را در خود جای میداد، اینک به طرزی غریب جایگاه و منزلت معنوی پیشین خود را از دست داده است. از نظر بسیاری از اندیشمندان، هم زمان با پیشرفتهای فنآوری، از زمین به عنوان منبع اصلی تأمین نیازها استفاده شد و این آغازی بود بر آنچه امروزه انسان را احاطه کرده است. انکشانی که بر سراسر فنآوری جدید حاکم است، خصلت در افتادن، به معنای تعرض را دارد. به گونهای که انرژی نهفته در طبیعت، اکتشاف شده و حبس میگردد (هایدگر). شعر و ادبیات و فلسفه، در حقیقت نمود بیرونی روح انسان و اجتماع انسانی است و جامعة انسانی را به وحدت اجزای طبیعت و کل هستی مرتبط میسازد (استوارت، 2000). از این رو تلاش برای ارتباطی از این است با طبیعت نیز حائز اهمیت است. از جمله این تلاشهای هنری، میتوان به جنبشهای اواخر دهة 1960 اشاره کرد. موجی از توجههای هنرمندان به طبیعت و زمین، نهفتی با عنوان هنر زمینی یا Land Art را بوجود آوردند که به اسامی مختلفی همچون Nature Art. Earth works خوانده شدند. این گروه از هنرمندان، زمین و طبیعت را به مثابة بوم خود قلمداد میکردند و سعی در انکشان آن داشتند. در این گرایش، توجه به مفاهیم و مضامین طبیعت برپایة برداشتهای شخصی انجام میپذیرد. معماری منظر از این تلاشها در رهیافتهای آنان، اثر پذیرفته است. موج دیگری از توجهها نسبت به منظر و محیط، نگاهی توأم با فلسفة طبیعت است. در این نگاه، بوم شناسی (ecology) ارتباط تنگاتنگی با فلسفة بوم نهاد ecophilosophy پیدا میکند. این رویکرد در مراحلی، اخلاقگرایی در طبیعت را پیش میکشد. در دهة 1970، پروفسور مایان مک هارگ چنین مطرح کرد که منظر (Landscape) در واقع نظامی بوم شناختی و متکی بر عدد مل محیطی، نظیر زمین شناسی، حیات گیاهی، حیات جانوری، کاربری زمین و جزء آن است. پژوهشگران این عرصه، تمایل به ایجاد ارتباطی عقلانی با ذات و سرشت بوم و طبیعت دارند. آنها درصدد جستجو برای دستیابی به منطقیترین الگو برای درک طبیعتاند. معمای منظر، پیش از هر حرفة طراحی محیطی، حرفهای در حل پیشرفت است. معماری منظر یکی از متنوعترین حرفههای طراحی است. در دهة 1920، طراحی شهری به عنوان حرفهای مستقل با برنامهها و سازمانهای خاص خود از معماری و معماری منظر جدا شد. اما با وجود این، معماری منظر به مثابة نیرویی عمده در برنامهریزی و طراحی شهری همچنان به قوت خود باقی ماند و به پیشرفت خود ادامه داد. به طوری که در اواخر قرن بیستم به دشواری میشد آن را با چند اصطلاح ساده توصیف کرد، زیرا دامنة این حرفه بسیار وسیع و پروژههای آن بسیار متنوع گشته بود. طراحی منظر، یعنی هستة تاریخی این حرفه که به طراحی بر جزئیات فضاهای باز برای فضاهای مسکون، تجاری، صنعتی، نهادی و همگانی میپردازد. طراحی منظر مستلزم برخورد با سایت به مثابه هنر، ایجاد تعادل بین سطوح سخت و نرم در فضاهای بیرونی و داخلی است. اگر چه انسان از نخستین گامهای حرکت و فعالیت خود در عرصة محیط برای ایجاد محیط مناسب زیست ـ چه در فضاهای بسته و چه باز ـ با توجه به میزان شناخت خود، در برخورد با عناصر محیط با تعمق برخورد کرده است و تدابیر او همواره در قالب مصلحت اندیشی و نگاه بد جوانب موضوع انجام گرفته است، اما این تدابیر تا صد و پنجاه سال پیش، به عنوان دانشی نظاممند وجود نداشت. از اواخر قرن 19 (نوزدهم) به دلیل تغییر شرایط مناسب انسان در عرصة محیط، ناشی از انقلابهای صنعتی، او دریافت که در ادامة حرکت و ایجاد تغییر در شکل و نظام محیط پیرامونی خویش، باید به نگاهی منسجم و نظاممند مسلح باشد و توجه بیشتر به برخی مسائل نو و تجدیدنظر در مناسبات کهن خود با عناصر پیرامونیاش را مد نظر قرار دهد. در طول حدود یکصد و پنجاه سال که از عمر پیدایش معماری منظر میگذرد، حوزة فعالیت و نقش و کارکرد این رشته بتدریج شفافتر و مشخصتر شده است. با وجود این، تعاریف متفاوتی نیز از آن به دست داده شده، که هر کدام در جای خود با توجه به دیدگاههای تخصصی مربوط، بیانگر مفاهیم و ارتباط ویژهای با مقولة طراحی منظر و به عنوان مبنای آن دیدگاه قابل توجه است. ریچارد مویر (Richard muir) در مقدمة کتاب خود با عنوان Approaches to the landscape به این موضوع اشاره دارد که با وجود بررسیها و کارهای زیادی که دربارة معماری منظر انجام گرفته، این رشته به مثابه درختی به نظر میرسد که شاخههای زیادی دارد و از بدنة اصلی آن، دیدگاهها و نگرشهای متفاوت جوانهزده و رشد کردهاند. او ضمن جمعآوری دیدگاههای متفاوت دربارة مفهوم و آموزش منظر، به دو دیدگاه عمدة کارشناسانه اشاره میکند، دیدگاهی بر زمینههای تاریخی، جمعیتی و مسایل اجتماعی و فرهنگی در تماس و تداخل با طبیعت تکیه دارد، و دیدگاه دیگر، ریشه در جوانب جغرافیای انسانی و بازتاب عناصر طبیعی و جغرافیایی در سایر علوم دارد. که بعدها، پیرامون این گروه به مباحث زیبایی شناسی منظر و نمادگرایی متمایل شدند و جریان فکری معینی را بوجود آوردند. معماری منظر ناشی است که به فضای بیرونی ـ چه از دیدگاه محیط زیست و طبیعت، چه از دیدگاه رابطة آن با زندگی انسان، و چه از دیدگاه هنر و زیبایی شناسی ـ میپردازد. برای آشنایی بیشتر با ابعاد این دانش، آشنایی بیشتری با
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .docx ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 6 صفحه
قسمتی از متن .docx :
قانون بفای بار الکتریکی
یک توپ را با میله پلاستیکی و دیگر را میله شیشهای باردار کنید سپس آنها را به هم بچسبانید. گاهی دوبار ناپدید میشوند و همدیگر را از بین میبرند. برای بیان این مساله میتوان از یک قانون ریاضی مبنی بر اینکه اگر حاصل جمع دو کمیت صفر شود، یکی از آن دو مثبت و دیگری منفی است، استفاده نمود. طبق قرارداد به میله پلاستیکی را بار منفی و میله شیشهای را بار مثبت نسبت دادهاند. بیان ساده ای از قانون بقای بار وقتی که یک میله پلاستیکی را با خز مالش میدهیم، میله بار منفی و خز بار مثبت پیدا میکند. آزمایش را با دو جسم خنثی شروع میکنیم، یعنی مجموع بار آن دو برابر صفر است. بعد از مالش دادن ، یکی بار مثبت و دیگری بار منفی مییابد که باز هم بار کل برابر صفر میشود. همچنین وقتی میلهای بار مثبت بیابد، بار جسم پلاستیکی که میله شیشهای را با آن مالش میدهیم منفی میشود. هیچ کس نمی تواند یکی از این دو بار را خلق کند، بدون آنکه همزمان دیگری را نیز تولید کرده باشد در یک چنین فرایندی مقدار کل بار تغییر نمیکند. این مطلب بیانگر قانون بقای بار الکتریکی است. این قانون همانند قوانین پایستگی جرم و انرژی ، اندازه حرکت خطی ، اندازه حرکت زاویه ای و ... در فیزیک یک قانون بنیادی است. قانون بقای بار الکتریکی در اتم همه اجسام دارای ذراتی با بار الکتریکی مثبت و منفی هستند. این ذرات هماناتمهایی هستند که جهان مادی را میسازند. ابعاد این اتمها از مرتبه آنگستروم است. چندین میلیون از این اتمها ، در کنار هم ، چیزی در حدود یک نقطه نمایان میشوند. هر اتم از لحاظ بار الکتریکی خنثی است، زیرا به تعداد مساوی بار مثبت و منفی دارد. بار مثبت اتم و تقریبا تمامی جرم آن ، در مرکز آن ، یعنی در هسته متمرکز شده است. ابعاد هسته ده هزار برابر کوچکتر از ابعاد کل اتم است. هسته یک خوشه محکم به هم چسبیده متشکل از دو نوع ذره پروتونها و نوترونهاست. تراکم جرم در این ذرات غیر قابل تصور است. یک تفاوت مهم بین پروتونها و نوترونها این است که پروتونها دارای بار الکتریکی مثبت بوده ولی نوترونها از نظر بار الکتریکی خنثی هستند. تعداد پروتونها هسته ، عنصر شیمیایی را که هسته به آن تعلق دارد، مشخص میکند، با این حال قسمت اعظم فضای اتم خالی است، در ناحیه اطراف هسته تعدادی ذره با بار الکتریکی منفی به نام الکترون وجود دارد. جرم الکترون کم است، اما بار آن منفی و مقدارش برابر مقدار بار روی پروتون است. از اینرو در یک اتم خنثی تعداد الکترونها در فضای اطراف هسته درست برابر تعداد پروتونها در داخل هسته است. الکترونها توسط نیروی جاذبه الکتریکی در نزدیکی هسته به آن مقید میشوند. مبادله بار و قانون بقای بار الکتریکی گاهی یک تماس ساده میان اجسام ممکن است باعث شود که تعدادی الکترون از یک جسم به جسم دیگر منتقل شود. وقتی میله پلاستیکی با خز مالش داده میشود، برخی الکترونها از خز به میله پلاستیکی منتقل میشوند. ممکن است تعداد الکترونهایی که به میله پلاستیکی منتقل میشوند، در حدود ( 9 ^ 10 ) باشد که ظاهرا زیاد است. تعداد کل الکترونهای موجود در میله پلاستیکی در حدود 24 ^ 10 است. در فلزات بستگی الکترونها به هسته ضعیف است و الکترونها میتوانند آزادانه در داخل ماده حرکت کنند. چون بار به راحتی در داخل میله فلزی به هم وصل نماییم، هر دو کره خنثی میشوند. ماده ای که بار الکتریکی را از خود عبور میدهد رسانا نامیده میشود. در جامدات ، فقط الکترونها میتوانند حرکت کنند. اما محلول الکترولیت ، آب شور یا گاز داخل لامپ فلوئورسانس رساناهای بسیار خوبی هستند. زیرا حاملین بار مثبت و منفی هردو تحت تاثیر نیروی الکتریکی میتوانند آزادانه حرکت کنند. در تمام فرایندهای مبادله بار و انتقالات اخیر قانون بقای بار الکترکی به دقت ملاحظه میشود. به عبارتی نحوه مبادله بار به توسط قانون بقای بار صورت میگیرد. در واکنشهای شیمیایی این قانون همانند قانون بقای جرم ظاهر می شود و واکنش را از نظر الکتریکی مجاز می داند که در طرفین واکنش مجموع بارهای الکتریکی برابر باشند.
قانون بنیادی الکتریسیته ساکن چگونه است؟
بارهای الکتریکی همنوع یکدیگر را می رانند و بارهای الکتریکی نا همنوع یکدیگر را می ربایند. به عبارت دیگر دو بار مثبت و منفی یکدیگر را می ربایند و دو بار مثبت یا دو بار منفی یکدیگر را می رانند.
/ /
/
روشهای تولید الکتریسیته ساکن کدامند؟
به سه روش می توان الکتریسیته ساکن تولید کرد: روش مالش. روش القاء و تماس.
س: تولید الکتریسیته ساکن یا باردار کردن به طریقه مالش چگونه است؟
ج: این روش مناسب اجسام نا رسانا است. هنگامی که دو جسم نارسانا بر روی هم مالیده می شوند، به علت اصطکاک و گرمای تولید شده، الکترونهای آن جسمی که سست ترند از اتمهای خود کنده شده و بر روی جسم دیگر منتقل می شوند. در این حالت در جسمی که الکترون از دست داده بار مثبت(+) و در جسمی که الکترون گرفته است، بنا به قانون پایستگی
بار الکتریکی به همان مقدار بارمنفی(-) به وجود می آید. مثلاً در صورتی که یک میله پلاستیکی( یا ابونیتی) را به پارچه پشمی مالش دهیم، الکترونها از پارچه به میله پلاستیکی منتقل شده و میله بار منفی و پارچه بار مثبت خالص پیدا می کند. یا اگر به جای میله پلاستیکی از میله شیشه ای استفاده کنیم، برعکس حالت قبل شیشه بار مثبت و پارچه بار منفی پیدا می کند.
/
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 24
حل مساله بار 1-0 چند بعدی توسط سیستمهای P به همراه ورودی و غشاء فعال:
خلاصه:
سیستمهای غشایی از نظر زیستی مدلهای تئوری محاسبه همسو و توزیع شده را فعال میکند. در این مقاله الگوریتم غشایی را نشان میدهیم تا به کمک آن مساله بار 1-0 چند بعدی را در زمانی خطی توسط سیستمهای شناسنده P به همراه ورودی غشاهای فعال که از دو قسمت استفاده میکند، حل کند. این الگوریتم را میتوان اصلاح کرد و از آن برای حل مساله برنامهنویسی عدد صحیح 1-0 عمومی استفاده کرد.
مقدمه:
سیستمهای P، طبقهای از ابزار محاسله همسوی توزیع شده یک نوع بیوشیمی هستند که در [4] معرفی شد و میتوان آن را به عنوان معماری محاسبه کلی دانست که انواع مختلف اشیاء در آن قسمت توسط عملکردهای مختلف پردازش میشوند. از این دیدگاه مطرح میشود که پردازشهای خاصی که در ساختار پیچیده موجودات زنده صورت میگیرد، به صورت محاسباتی درنظر گرفته میشوند.
از زمانی که Gh, Paun آن را مطرح کرد، دانشمندان کامپیوتر و بیولوژیستها این زمینه را با نقطه نظرهای مختلف خود غنیسازی کردهاند. برای انگیزه و جزئیات توضیحات مربوط به مدلهای متفاوت سیستم P لطفاً به [6/4] توجه کنید. تقسیمبندی غشایی (الهام شده از تقسیمات سلولی گفته شده در بیولوژی)، تنها راهی است که برای بدست آوردن فضای کاری ---- در زمان خطی بیشتر و بر اساس حل مسائل مشکل (عموماً مسائل تکمیل شده VP) در زمان چند جملهای (اغلب به صورت خطی) بررسی شده است. جزئیات را میتوان در [4.6.8] ببینید.
اخیراً مسائل کامل PSPACE به این روش مطرح شدند. در گفتگویی غیررسمی، در سیستمهای P به همراه غشاء فعال میتوانیم از 6 نوع قانون استفاده کنیم:
قوانین بازگشت چندگانه؛
قوانین مربوط به حل معرفی اشیاء در غشاءها؛
قوانین مربوط به ارسال اشیاء به بیرون از غشاء؛
قوانین مربطو به حل غشاء؛
قوانین مربوط به تقسیم غشاء اولیه؛
قوانین مربوط به تقسیم غشاء ثانویه.
در [10] Perez-Jimenez، مساله قابل راضی کنندهای را در زمان خطی با توجه به تعداد متغیرها و شروط فرمولگزارهای توسط سیستم تشخیص دهنده P به همراه ورودی و به همراه غشاء فعال 2 قسمتی حل میکند. مساله قابل راضی شدن hard NP نیست، چون الگوریتمهای تقریبی چند جملهای وجود دارد که آن را حل میکند و این نمونهای برای مساله بار 1-0 چند جملهای به حساب نمیآید. در این مقاله به حل مساله بار 1-0 چند بعدی توسط سیستم P توجه کردیم.
مساله اصلی تکمیل NP میباشد و همچنین مساله بار 1-0 چندبعدی به درجه مساله تکمیل NP بستگی دارد. بنابراین این مساله در زمان چندجملهای توسط سیستمهای P با ورودی و با غشاء فعال که از تقسیم 2 استفاده میکند، حل خواهد شد. میتوانیم این نوع محلول را با کمک کاهش مساله بار 1-0 چندبعدی برای مساله راضی شدن بدست آوریم تا آن سیستم P را که به حل مساله راضی شدن در زمان خطی میپردازیم، بکار بریم. همچنان این مساله قابل بحث است که چگونه میتوان مساله NP را به مساله تکمیل شده NP دیگر بوسیله سیستم P ساده کرد.
در این مقاله مستقیماً الگوریتم غشایی را برای حل مساله بار 1-0 چندبعدی در زمان خطی توسط سیستم تشخیص دهنده P به همراه ورودی به همراه غشاء فعال که از تقسیم 2 استفاده میکند، ارائه میدهیم.در اینجا به طرحی از یک محدوده سیستم P توجه میکنیم که مساله بار 1-0 چندبعدی را حل میکند (نه به شکل بررسی رسمی الگورینتم غشایی). همانطور که در بخش 4 گفته شد، استفاده از این الگوریتم اصلاح شده برای حل مساله برنامهنویسی عدد صحیح 1-0 کلی، کار آسانی است.
سیستمهای P در الگوریتم در [5] تقریباً به طور یکسان به شکلی ساخته میشوند که برای هر نمونه از مساله قابل راضی شدن، یک سیستم P شکل میگیرد. در الگوریتم ما مربوط به مساله 0-1 چندبعدی، سیستمهای P به طور یکسان شکل میگیرند. برای همه نمونههایی که یک اندازه هستند، یک سیستم P طراحی میشود.
الگوریتم مربوط به مساله قابل راضی شدن در [5] از سیستم P با قوانین نوع (a)، (f)-(c) استفاده میکند و الگوریتم برای مساله راضی شدن در ]6] از سیستمهای P با قوانین نوع (c)-(a) و (e) استفاده میکند. در اینجا برای حل مساله بار 1-0 چندبعدی از سیستمهای P محدوتر استفاده میکنیم، یعنی سیستم P به همراه قوانین نوع (a)، (c) و (e).
مساله کلاسیک بار مورد خاصی از مساله بار 1-0 چندبعدی با یک بعد میباشد. تقریباٌ میتوان الگوریتم غشایی را برای حل مساله بار کلاسیک [7]درنظر بگیریم. الگوریتم جدید ما نسبت به الگوریتم در [7] مراحل محاسبه کمتری دارد، بویژه در الگوریتم در [7]. 2n+1 مرحله برای مطرح کردن همه assignment متغیرها استفاده میشود، حال آنکه در الگوریتم جدید ما، n+1 مرحله برای تولید کردن همه assignment متغیرها استفاده میشود. در اینجا n تعداد متغیرهاست. در این مفهوم، الگوریتم ما، اصلاح الگوریتم [7] میباشد.
این مقاله به صورت زیر طبقهبندی شده است:
در بخش 2، مفهوم سیستم P سازمان دهنده معرفی میشود که مدل محاسبهای برای حل مساله بار 1-0 چندبعدی بوده و آن را در محاسبه با غشاءها درجه پیچیدگی چندجملهای مینامند.
در بخش 3، برای حل مساله بار 1-0 چندبعدی به کمک سیستمهای P سازمان دهنده با غشاءهای فعال 2 قسمتی، الگوریتم غشایی ارائه میدهد.
در بخش 4، بحث ارائه شده است.
2. سیستم P:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
اندازه گیری بار الکترون توسط میلیکان
تاریخچه الکتریسته
علم الکتریسته به دوران باستان بر میگردد که تاریخ دقیق آن مشخص نیست. اما برخی تولد آن را به مشاهده معروف تالس ملطی (Thales of Miletus) در 600 سال قبل از میلاد ارجاع میدهند. که در آن زمان تالس متوجه شد که یک تکه کهربای مالش داده شده خرده های کاه را میرباید، یا اینکه در یک تجربه عادی دیدهایم که وقتی یک شانه کائوچویی سخت را با پارچه پشمی مالش دهیم، شانه ریزههای کوچک کاغذ را جذب میکند. در اثر مالش این دو جسم به یکدیگر هم کائوچو و هم پشم خاصیت جدیدی پیدا میکنند. یعنی باردار میشوند، از این آزمایش برای معرفی مفهوم بار الکتریکی استفاده میشود.
منشأ الکتریسته :
طبق نظریه الکترونی اتم ، یک اتم از ذرات کوچکتری به نامهای الکترون ، پروتون و نوترون تشکیل شده است، که الکترونها دارای بار منفی و پروتونها دارای بار مثبت و نوترونها بدون بار هستند. تعداد الکترونها و پروتونهای یک اتم در حالت عادی برابر است. بنابراین ، اتم در حالت عادی از نظر بار الکتریکی خنثی است.در اثر تماس ، نزدیکی و یا برخورد اجسام بر همدیگر میان اجسام اندازه حرکت خطی مبادله میشود. در اثر تغییر اندازه حرکت ، نیروهایی ایجاد میشود. چگونگی شکل گیری این نیروها به ساختار اتمی تشکیل دهنده اجسام برمیگردد. به عبارتی این نیروها منشأ الکتریکی و مغناطیسی دارند.در اثر مالش اجسام بر همدیگر ، جسمی که در اتمهای تشکیل دهنده خود اتمی از نوع دهنده الکترون داشته باشد، الکترون خود را به جسم دیگر که نسبت به آن خاصیت الکترونگاتیوی بیشتری دارد میدهد و مبادله الکترون بین اتمها و در نهایت اجسام منجر به تولید الکتریسته میشود.
تقسیمات الکتریسته :
الکتریسته ساکن :
اگر یک میله شیشهای را به پارچه پشمی مالش دهیم، هر دو جسم الکتریسته دار میشوند. زیرا شیشه تعدادی الکترون از دست میدهد و پارچه الکترون میگیرد. پس شیشه دارای بار مثبت و پارچه به همان مقدار دارای بار منفی میگردد. بار ایجاد شده در شیشه و پارچه در محل تماس باقی میماند.
الکتریسته القایی :
اگر میله با بار منفی را به دو کره فلزی بدون باری که باهم در تماس بوده و توسط پایههای عایقی از زمین جدا شده باشند، نزدیک کنیم. قبل از دور کردن میله ، بدون دست زدن به پوسته کرات آنها را از هم جدا کنیم. کره نزدیک به میله دارای بار مثبت و کره دور از آن دارای منفی خواهد بود، که مقدار بار روی کرات برابرند. این نوع باردار شدن را باردار شدن به روش القا یا مجاورت مینامند.
الکتریسته جاری :
عبور پیوسته الکترون از یک هادی را الکتریسته جاری گویند. خلاف جهت حرکت الکترون را جهت قراردادی جریان الکتریکی (جریان الکترونی) انتخاب میکنند. عامل برقراری جریان ثابت ، اختلاف پتاسیل ثابتی میباشد، که در دو سر هادی برقرار است و وسایل تولید این اختلاف پتاسیل ثابت پیلهای شیمیایی ، ژنراتورها و دیناموها میباشند.
اجسام رسانا و نارسانا :
بعضی از اجسام مانند فلزات که الکتریسته را به خوبی از خود عبور میدهند، رسانا نامیده میشوند. در این نوع اجسام الکترونهای آزاد اتم به راحتی در شبکه بلوری اجسام حرکت میکنند و عمل رسانایی را انجام میدهند.اجسامی که الکترونهای آزاد ( برای هدایت الکترون ) ندارند و نمیتوانند الکتریسته را از خود عبور دهند، نارسانا یا عایق نامیده میشود. باید توجه نمود که رسانایی یا نارسانایی یک کمیت نسبی است.
توزیع بار الکتریکی در اجسام رسانا :
اگر جسم رسانایی بر روی پایه عایقی قرار گیرد و در اثر مالش باردار شود، بار تولید شده در آن در سطح خارجیاش پخش میشود، بطوری که در لبهها و قسمتهای نوک تیز چگالی سطحی بار بیشتر از سایر قسمتها میباشد.
بار الکتریکی :
میزان باری که ذره بنیادی الکترون دارد را مبنا قرار میگیرد و چون مبادله بار از طریق الکترون صورت میگیرد شمارش تعداد الکترونهای مبادله شده بار الکتریکی جسم را به ما میدهد. به عبارتی اگر جسمی n تا الکترون دریافت نماید، بار الکتریکی آن از نوع منفی بوده (چون الکترون گرفته) و مقدارش n برابر بار الکترون خواهد بود. اگر بار الکتریکی را با علامت q و بار الکترون را با e نمایش دهیم، مقدار بار الکتریکی هر جسم از رابطه q = ne تبعیت مینماید. واحد بار الکتریکی به افتخار اولین قانون الکتریسته (قانون کولن) که آقای کولن کشف نمود، کولن نام دارد. بار الکتریکی یک الکترون در دستگاه برحسب کولن برابر است با:
e = 1.06 x 10-19 c
اثر بارهای الکتریکی بر همدیگر :
بر طبق قانون کولن دو بار الکتریکی همنام همدیگر را دفع و دو بار الکتریکی غیر همنام همدیگر را جذب میکنند. مقدار نیروی جاذبه یا دافعه بین بارها بر طبق قانون کولن با حاصلضرب اندازه بارها نسبت مستقیم و با مجذور فاصله بارها نسبت عکس دارد. این نیرو به جنس محیطی که بارها در آن واقع شده نیز وابسته است (بستگی نیرو به
برای اندازه گیری بار الکترون در آزمایش میلیکان بار یونهایی اندازه گیری می شود که در اثر تخلیه الکتریکی در درون گازها بوجود می آیند . برای انجام تخلیه الکتریکی در این طریقه از اثر فتوالکتریک استفاده می شود . اشعه x دارای طول موج بسیار کوتاه و در نتیجه انرژی زیاد است و هنگام تابش به یک گاز یونش ایجاد می نماید . جهت اندازه گیری بار یونهایی که به این ترتیب بوجود می آیند از پدیده مهمی استفاده می شود و آن اینستکه اگر در شرایط مناسب قطراتی از مایع در یک محیط یونی گازی شکل وارد شوند مرکز تجمع یونها خواهند شد و هر قطره تعدادی از یونها را تحت تاثیر نیروهای سطحی بخود جلب و جذب می نماید ذره ای جدید بدست می آید که بار الکتریکی آن مساوی یا چند برابر بار یونها خواهد بود و اساس آزمایش میلیکان عبارتست از مطالعه حرکت این قطره ها تحت اثر یک میدان الکتریکی
دستگاهی که در آزمایش میلیکان بکار می رود عبارتست از یک اطاقک پر شده از هوا یا گازی دیگر . در بالای اطاقک قطره چکان مخصوص قرار دارد که مایع مورد آزمایش را بصورت قطره های بسیار ریز در فضای داخلی اطاق وارد می نماید در زیر این قطره چکان و در قسمت پایین اطاقک یک سطح با دو جوشن p1 و p2 قرار دارد جوشن بالاییp1 دارای گذرگاهی برای عبور قطره ها می باشد . قطره ها می توانند ضمن سقوط از این گذرگاه بگذرند وداخل فضای خازن شوند در پایین اطاقک و در هر طرف پنجره ای وجود دارد . از یکی از این دو پنجره مثلا پنجره F1 اشعه X بداخل اطاقک تابیده می شود تا گاز داخل اطاقک یونیزه شود پنجره دیگر F2 برای روشن کردن داخل اطاقک می باشد از همین قسمت بوسیله یک تلسکوپ می توان داخل اطاقک را تماشا کرد و حرکت قطره را بدقت ملاحظه کرد از طرف دیگر مجموع دستگاه فوق بیک پمپ خلا و یک فشار سنج وصل شده تا بتوان فشار گاز داخل اطاقک را کنترل و تنظیم نمود . برای اینکه بتوان در درجه حرارت ثابت این آزمایش را انجام داد اطاقک را در داخل یک حمام روغنی قرار می دهند.
در ابتدا در این آزمایش از قطره های آب استفاده می شده ا ولی از آنجاییکه قطره های آب در اثر تبخیر وزن و حجمشان تغییر می کرد بجای آب از روغنهای مایع استفاده می شود بدیهی است هر چه قطره ها ریزتر انتخاب شوند وزن آنها کمتر و سرعت سقوط کوچکتر خواهد بود و بنابراین حرکت آنها با دقت بیشتری مورد مطالعه قرار خواهد گرفت .
در صورتیکه بین دو جوشن خازن اختلاف پتانسیلی برقرار نکرده باشند قطره ها پس از خروج از قطره چکان سقوط آزاد را شروع خواهند نمود در این حالت هر قطره تحت اثر دو نیرو قرار می گیرد یکی نیروی وزن ظاهری قطره که سبب سقوط قطره از بالا به پایین می شود دیگری نیروی مقاومت محیطی که قطره در آن سقوط می کند . نیروی مقاومت محیط در جهت عکس نیروی اول می باشد . نیروی مقاومت محیط بستگی بسرعت سقوط ویسکوزیته محیط و شعاع قطره دارد. اگر قطره باندازه کافی ریز باشد بزودی نیروی وزن ظاهری قطره و نیروی مقاومت محیط با یکدیگر برابر شده در نتیجه قطره بسرعت حد خواهد رسید . یعنی از آن لحظه به بعد با سرعت ثابت سقوط خواهد کرد و حرکتی یکنواخت خواهد داشت .
حال اگر بین دو جوشن p1 و p2 خازن بوسیله یک باطری و یا وسیله دیگری اختلاف پتانسیل معینی برقرار کنیم یک میدان الکتریکی بوجود می آید و قطره باردار از گذرگاه جوشن p1 وارد فضایخازن شود نیرویی از طرف میدان بر قطره وارد می شود و سبب می گردد که حرکت آن بر حسب اینکه نیروی وارده در جهت یا در خلاف جهت نیروی وزن اثر کند تندتر یا کندتر شود. بنابراین ملاحظه می شود که خازن وسیله خوبی برای تغییر دادن سرعت سقوط قطره می باشد بطوریکه حتی ممکن است سرعت قطره را به صفر رسانید که در این صورت قطره در میدان دید تلسکوپ بخوبی قابل مشاهده می باشد . اکنون آنچه را در فوق ذکر نمودیم با محاسبات مربوطه تکرار می کنیم .
1) سقوط آزاد اگر جرم قطره m و جرم هوای هم حجمش m' باشد نیروی وزن قطره که سبب سقوط آن می شود برابراست با :
P = (m – m' ) g