لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 21
کنترل فعال متمرکز و نامتمرکز سازههای بلند در حالت سه بعدی با پسخورجابجایی و سرعت
*مهران فدوی، فیاض رحیمزاده رفویی2، سهیل منجمینژاد3
1. دانشجوی دکتری و عضو هیات علمی دانشگاه آزاد اسلامی واحد گرگان
2. استاد دانشگاه صنعتی شریف تهران
3. استادیار دانشگاه آزاد اسلامی واحد تهران مرکز
*. MehranFadavi@yahoo.com
چکیده
نیاز به ترازهای ایمنی بالاتر در سازههای بااهمیت، تامین پایداری و ایجاد محدودیتهایی در خصوص میزان لرزش به لحاظ احساس ایمنی ساکنین در سازههای بلند از اهداف اصلی طراحان و مهندسان عمران میباشد. در این گونه سازهها بکارگیری سیستمهای کنترل ارتعاشات سازهای به صورت فعال و غیرفعال مرسوم بوده و برخی از آنها نیز کاربردی شدهاند. در این مقاله کنترل متمرکز سازههای بلند تشریح شده و در خصوص نامتمرکز کردن این کنترل به گونهای که بر رفتار کلی سازه تاثیر مثبت داشته باشد، پژوهش گردیده است. در این پژوهش سازه به صورت سه بعدی مدل شده و الگوریتم کنترل فعال بهینه لحظهای، با پسخور جابجایی و سرعت جهت حل معادلات کنترل استفاده شده است. روابط حاکم بر پایداری سازه در حالت نامتمرکز و نوشتن الگوریتم حل معادلات به گونهای که پایداری سازه در کلیه حالتها برقرار باشد، بحث و اثبات گردیده و در انتها نمونههای عددی از حل روابط و معادلات حاکم با توجه به حالتهای گوناگون از نامتمرکزسازی کنترل در سازههای بلند ارائه شده است. یکی از حالتهای نامتمرکزسازی کنترل به تقسیم سازه اصلی با تعداد 3n درجه آزادی به زیرسازههایی با تعداد 3ni درجه آزادی گفته میشود که مجموع تعداد درجه آزادی زیر سازهها برابر با تعداد درجه آزادی سازه اصلی میباشد.
واژههای کلیدی: سازههای بلند، متمرکز، نامتمرکز، سه بعدی، پسخور
1. مقدمه
کنترل فعال (Active Control) سازهها به طور کلی شامل دو بخش الگوریتمهای مورد نیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزمهای اعمال نیرو میباشد. در این نوع کنترل، از الگوریتمهای گوناگونی که دارای دیدگاههای کنترلی متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتمهای به کار رفته در کنترل سازه میباشند. با توجه به تعریفهایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران شده است یک سیستم کنترل فعال شامل بخشهای زیر میباشد (شکل 1):
شکل 1: الگوریتم کلی کنترل فعال سازه در حالت کنترل متمرکز
سیستمهای کنترل را میتوان در دو دسته سیستمهای معمولی و سیستمهای بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستمهای معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستمهای ریزتر نمیباشد ولی در سیستمهای بزرگ مقیاس نظیر ساختمانهای بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمانها، به ویژه با توجه به اینکه نیروهای لرزهای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد میشوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود میآورد. بر این اساس تلاش میشود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم از تعداد معینی زیرسیستم (Subsystem) تشکیل میشود (شکل 2).
شکل 2: الگوریتم کلی کنترل فعال در حالت کنترل غیرمتمرکز با سه زیرسیستم
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازهای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. کنترل غیرمتمرکز در آغاز در مورد سیستمهای قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، آقایان ونگ و دیویدسون (Wang & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پسخور محلی و جبرانسازی دینامیکی پایدار باشد، بیان کردند.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازههای فضایی انعطافپذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 61
گفتار نخست: کلیات
1-1) مقدمه
تامین پایداری سازههای عمرانی در برابر بارهای وارده بر آنها هدف اصلی طراحان و مهندسان عمران میباشد. هنوز هم ساختمانها، پلها و دیگر سازههای ساخت بشر به عنوان سازههایی غیرفعال به لحاظ پایداری تابع جرم و صلبیت خود در برابر بارهای خارجی بوده و توانایی مشخصی برای اینگونه بارها دارند. در چند دهه اخیر به دلایلی چون نرمی زیاد و اجتنابناپذیر سازههای بلند، وجود محدودیتهایی در خصوص میزان لرزش حداکثر به لحاظ آسایش ساکنین، نیاز به ترازهای بالاتر ایمنی در سازههایی با کاربردهای پراهمیت و همینطور ارزش بالای وسایل و تجهیزات داخلی و نصب شده در این سازهها سبب شدهاند که در نظر گرفتن ملاحظاتی ویژه برای سازهها و محدود کردن دامنه لرزش آنها ضرورت یابد. بدین لحاظ روشهای گوناگونی برای محدود کردن پاسخ سازهها به تحریکات خارجی در قالب سیستمهای کنترل غیرفعال (Passive Control) و کنترل نیمه فعال (Semi-Active Control) و کنترل فعال (Active Control) در چند دهه اخیر ابداع و ارائه شده و برخی از آنها عملاً مورد استفاده قرار گرفتهاند.
در حوزه سیستمهای کنترل غیرفعال روشهایی نظیر جدایش لرزهای پی سازه (Base Isolated)، میراگرهای جرمی (TMD)، میراگرهای مایع (TLD) برای نیروی باد و میراگرهایی نظیر میراگرهای اصطکاکی، میراگرهای ویسکوالاستیک (FVD, SVD) و انواع گوناگون دیگر به کار گرفته شدهاند.
در حوزه سیستمهای فعال میتوان به میراگرهای جرمی فعال (AMD)، سیستم کابلهای فعال (AT)، القا کنندههای پالسی (PIC)، سیستمهای با سختی متغیر فعال و .... اشاره نمود که با استفاده از انرژی خارجی قابل بهرهبرداری میباشند.
1-2) بیان موضوع و اهمیت آن
با توجه به محدود بودن میزان عملکرد سیستمهای کنترل غیرفعال در سالهای اخیر، کنترل فعال سازهها به صورت شاخصتری نمود پیدا کرده و مورد توجه پژوهشگران و حتی طراحان قرار گرفته است. ایده کنترل و الگوریتمهای مورد استفاده در آن پیش از آنکه در مهندسی عمران کاربردی شوند در سایر رشتههای مهندسی نظیر برق، مکانیک، هوافضا و الکترونیک کاربرد گستردهای داشته و دارند. هرچند در این رشتهها سیستمهای موردنظر جهت کنترل مشابه موارد موجود در زمینه مهندسی عمران حجیم و با تعداد درجات آزادی بالا نبوده است.
کنترل فعال سازههای عمرانی، به طور کلی شامل دو بخش مکانیزمهای اعمال نیرو و نیز الگوریتمهای مورد نیاز جهت تعیین مقدار نیروی کنترل میباشند. در این راستا، از الگوریتمهای کنترل نسبت به تعیین نیروهای مورد نیاز اقدام و سپس به کنترلکنندهها (Actuators) فرمان اعمال نیرو را میدهد. در کنترل فعال، از الگوریتمهای گوناگونی که دارای دیدگاههای کنترلی متفاوتی میباشند، استفاده میشود. الگوریتمهایی نظیر کنترل بهینه، کنترل بهینه لحظهای (Instantaneous Optimal Control)، جاگذاری قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتمهای مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتمهای به کار رفته در کنترل سازه میباشند. هدف نهایی کلیه این روش، کاهش نیروی اعمال شده به سیستم با هدف حفظ عملکرد سیستم کنترل شده است.
با توجه به تعریفهایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران [1] شده است یک سیستم کنترل فعال شامل بخشهای زیر میباشد (شکل 1-1):
شکل (1-1): الگوریتم کلی کنترل فعال سازه
هنگامی که نیروهای کنترل صرفاً بر اساس پاسخ سازهای محاسبه میشوند (حلقه 2) سیستم کنترل، حلقه بسته (Closed–Loop) و هنگامی که نیروهای کنترل صرفاً بر اساس انگیختگی بیرونی محاسبه شود (حلقه 1) سیستم کنترل حلقه باز (Open-Loop) نامیده شده و اگر هر دو حلقه محاسبه نیروهای کنترل به کار گرفته شوند سیستم کنترل حلقه بسته ـ باز (Closed–Open–Loop) نامیده میشود.
از نظر بزرگی، سیستمهای کنترل را میتوان در دو دسته سیستمهای معمولی و سیستمهای بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستمهای معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستمهای ریزتر نمیباشد ولی در سیستمهای بزرگ مقیاس نظیر ساختمانهای بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمانها، به ویژه با توجه به اینکه نیروهای لرزهای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد میشوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود میآورد. بر این اساس تلاش میشود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم متشکل از تعدادمعینی زیرسیستم (Subsystem) خواهد بود.
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازهای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. در ادامه در خصوص شیوههای ریز کردن و الگوریتمهای مورد استفاده جهت کنترل هر زیرسیستم بیشتر توضیح داده خواهد شد.
1-3) چارچوب پژوهش
سازههای بلند یکی از انواع سیستمهای سازهای حجیم میباشد که موضوع کنترل نامتمرکز در آن قابل بررسی میباشد. پژوهش حاضر پیرامون امکان نامتمرکز کردن نحوه عمل سیستم کنترل در این نوع سازهها و بررسی پایداری سیستم سازهای و نیز کارایی روش کنترل مورد استفاده تحت اثر تحریکهای مختلف وارده بر سازه بوده و با حالت کنترل متمرکز مقایسه میشود.
1-4) موضوعات بررسی شده در هر گفتار
پیشنهاد رساله دکترای حاضر،شامل پنج گفتار میباشد. در گفتار دوم، الگوریتمهای کنترل متمرکز سازهها و کارهای انجام شده در این زمینه بررسی و مرور میگردند. گفتار سوم نیز بررسی الگوریتمهای کنترل نامتمرکز سازهها و کارهای انجام شده تا کنون را شامل میشود. روشهای ریز کردن سیستمهای سازهای بلند با توجه به نوع سیستم سازهای باربر آنها قابل تعریف بوده و نمیتوان بدون توجه به سیستمهای انتقال بار گرانشی و جانبی طرح کنترل نامتمرکز را پیشنهاد داد. در انتهای این گفتار نیز به بررسی کارهای پژوهشگران در این زمینه پرداخته خواهد شد.
گفتار چهارم به پژوهش پیشنهادی و زمینههای کاری مورد نظر در این رساله میپردازد در این پژوهش الگوریتم پیشنهادی جهت نامتمرکز کردن کنترل سازههای بلند در حالت سه بعدی، به همراه حل یک نمونه مدل سه بعدی دو طبقه ارائه گردیده است. در این گفتار برنامه زمانبندی پژوهش نیز ارائه شده است. گفتار پنجم نیز شامل مراجع و پیوستها میباشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 38
کنترل سرمایی مرکبات
دو شکل عمدهی سرمازدگی وجود دارد:
سرمازدگی تشعشعی:
این سرمازدگی اغلب با آسمان صاف تشخیص داده میشود، )رطوبت پایین و باد کم.( سرما از سطح زمین به بالا حرکت میکند.
سرمازدگی Advection :
این زمانی اتفاق میافتد که یک توده هوای سرد و وسیع از قطب جنوب روی منطقه حرکت میکند. این نوع سرمازدگی زیاد رایج نیست. سرما پایین میآید و سرما اغلب روی قسمتهای هوایی گیاه دیده میشود. زمانی که سرمازدگی تشعشعی روی میدهد، به دو فرم دیده میشود:
سرمازدگی سفید: زمانی که شبنم قبل از صفر درجه تشکیل میشود و زمانی که دما به صفر درجه میرسد، کریستالهای یخ تشکیل میشود. از این رو سرمازدگی سفید نام دارد. فرم دیگر سرمازدگی:
سرمازدگی سیاه: گسترش مییابد زمانی که دمای تشکیل شبنم زیر صفر درجه است. سرمازدگی بدون هیچ یک از علائم قابل رویت یخ سفید روی میدهد.
اعلام سرمازدگی:
یک ابزار مفید برای آگاهی از احتمال سرمازدگی، اندازهگیری نقطه شبنم است. نقطه شبنم به وسیله کاستن دمای حباب تر (هوای اشباع) از حباب خشک (هوای خشک) محاسبه میشود. عدد بدست آمده با یک چارت مخصوص نظیر میشود و نقطه شبنم محاسبه میشود. تجربیات نشان دادهاند که اگر نقطه شبنم از 5/5 سانتی گراد در 4 بعدازظهر تجاوز کند، سپس احتمال سرمازدگی پایین است. اگر نقطه شبنم زیر 2/2 سانتی گراد در عصر باشد و موقعیت باد آرام و آسمان صاف باشد. پس احتمال سرمازدگی بالاست. نقطه شبنم اغلب در تلویزیون و رادیو بیان میشود.
دماهای بحرانی برای آسیب سرما در جدول زیر نمایش داده شده است.
دمایی که آسیب در آن روی میدهد بر حسب درجه سلسیوس
گونه ها
پرتقالها
4/1- تا 9/1-
میوه نارس
7/1- تا 8/2-
میوه نیمه رسیده
7/1- تا 9/3 -
میوه بالغ (رسیده)
آمادگی برای محافظت در مقابل آسیب سرمازدگی
روشهای مجهول:
شناسایی مناطق مستعد سرمازدگی روی زمین
تصمیم گرفتن برای برداشت محصول این قطعه زمینها در اولین فرصت
اصلاح کردن عادات تربیتی و پرورشی؛ مثلاً به کار بردن دیرموقع اسید ژیبرلین چرا که موجب تاخیر در رسیدن میوه میشود. تصمیم در به کار بردن (GA) اسید ژیبرلین دیرموقع فقط در ژانویه (دی ماه)
به هم زدن و جابهجا کردن سطح خاک
بیشتر باغات میوه یک ردیف چمن یا پوشش گیاهی در خاک دارند، شامل پوشش محصول یا ترکیبی از علفهای هرز. استفاده از این سیستم برای بهبود ساختار خاک در کشت مکرر ترجیح داده میشود. بنابراین اگر پوشش گیاهی وجود دارد، خاک را در طول روز عایق میکند و به خورشید اجازه نمیدهد که خاک را گرم کند. یک عمل بارز در کشت که باعث آسیب ساختمان خاک میشود، ایجاد شیار بسیار باریک در زمین یا اسپری کردن زمین با علف کشهای قوی است. یک خاک عاری از علف هرز، متراکم و مرطوب میتواند مقدار گرمایی که در خاک ذخیره میشود در طول روز افزایش دهد.
دماهای متفاوت در باغهای میوه با تکنیکهای متفاوت مدیریت خاک آزمایش شده است در جدول زیر آمده است:
تفاوت دمایی ()
آمادگی خاک
گرمترین
خاک برهنه، سفت و مرطوب
سلسیوس خنک تر
خاک مرطوب با پوشش کوتاه شده محصول
تا سلسیوس خنکتر
خاک مرطوب با پوشش گیاهی با رشد کم
سلسیوس خنکتر
خاک خشک و سفت
تا خنکتر
خاک تازه شخمخرده و بادکرده (هوا دار)
تا خنک تر
خاک با پوشش زیاد محصول
تا خنکتر
خاک با پوشش زیاد محصول و محدودیت ذخیره هوایی
سبک آبیاری کنید:
رطوبت مقدار قابل ملاحظهای از گرما را ذخیره میکند و خاک مرطوب گرما را راحتتر از خاک خشک هدایت و انتقال میدهد. با آبیاری سنگین محافظت بیشتری را نسبت به آبیاری سبک در مقابل سرما نمیدهد، بلکه با افزایش خطر آسیب بر روی ریشههای غذا دهنده همراه است. تصمیم بگیرید که فقط سطح 30 تا 40 سانتیمتری خاک را مرطوب نگه دارید. این مسئله با به کار بردن تقریباً 15 – 10 میلیمتر آبیاری در هفته امکانپذیر است.
پوشش کامل آبیاری دمای خاک را تا سلسیوس بالاتر از آبیاری قطرهای ناشی از مناطق با خاک مرطوب میرساند.
کنترل مکانیکی سرمازدگی
روشهای مکانیکی کنترل سرمازدگی عموماً برای اجرا شدن گران قیمتاند و شامل استفاده از آب پاشهایی که در بالای سر گیاه قرار میگیرند، گرم کنندهها با سوخت روغن (نفت) یا محفظههای گرم کننده سرما و ماشینهای باد میباشد.
قبل از عهدهدار شدن اندازهگیریهای مکانیکی برای محافظت در مقابل سرما هر نوع تلاش ممکن باید برای کاهش خطر سرمازدگی در حین عملیات کشت و یا پیرامون آن زودتر صورت گیرد.
سیستمهای آبیاری بالایی:
رایجترین روش محافظت فعال در مقابل سرمازدگی استفاده از آبیاری به روش قطرهای از بالاست در زمانی که ریسک سرمازدگی وجود دارد زمانی که آب در شرایط دمایی صفر و یا زیر صفر درجه برای محصول به کار میرود، یخ
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 26 صفحه
قسمتی از متن .doc :
مقدمه
هزاران سال است که بشر برای زنده ماندن و ادامۀ حیات خود به امر جمع آوری و نگهداری بذر مشغول بوده است. بذر ها همیشه برای زندگی و زیست انسان اهمیت حیاتی داشته اند. انسان های ماقبل تاریخ بذر ها را برای تغذیه و تکثیر جمع آوری و نگهداری می کردند و با استفاده مستمر از این امر همیشه به عنوان یک اصل مهم ادامه خواهد یافت و همچنین علت ظهور تمدنهای کهن را می توان مربوط به تولید غلات دانست.
هم اکنون نیز بذرها منبع اصلی غذا، نوشیدنی ها وداروهای متعدد هستند و بدیهی است که سهم بذر در تأمین احتیاجات بشری در مقایسه با سایر اعضای گیاهی از اهمیت خاصی برخوردار است.
بذر یک رابطۀ زنده بین والدین و نتاج و نیز عامل اصلی انتشار می باشد. همچنین بذر شامل یک گیاه زنده و در حال رکود و استراحت است و به طور کلی بذر متشکل از جنین، بافت های مواد ذخیره ای و پوششی های بذر است.
تاریخچۀ تجزیۀ بذر :
تقریباَ صد سال پیش اولین آزمایشگاه تجزیۀ بذر در شهر تاراند آلمان تأسیس شد در این آزمایشگاه ها خواص بذر مورد قبول خریداران و تهیه کنندگان بذر را تعیین می کردند. در سال 1924 اتحادیۀ بین المللی تجزیۀ بذر در انگلستان با نام ISTA(international seed testing assosiation) تشکیل شد. با آغاز فعالیت این مؤسسه در سال 1339،اقدام به تأسیس دو واحد مجزا به نام های تکثیر و کنترل بذر گردید و با توجه به نیاز به بذر گواهی شده جهت کشت و تولید محصولات زراعی و به علت عدم تکافوی اراضی ایستگاه های تابعه این مؤسسه اقدام به عقد قرارداد ازدیاد بذر با پیمانکاران تولید بذر نمود.
از سال 62این دو واحد در هم ادغام گردیدند و بخش تحقیقات و کنترل و گواهی بذر جایگزین آن گردید و در حال حاضر این بخش شامل 29 واحد در زمینۀ تولید کنترل، گواهی و توزیع و خرید بذور تولیدی محصولات مختلف می باشد ونیز در کنترل بذور وارداتی و صادراتی فعالیت دارد.
طبقات بذر :
بذر تولید شده در اصلاح نباتات به شرح زیر طبقه بندی می گردد :
1) بذر پروردۀ یک (Breeder 1) یا نوکلئوس : انتخاب هزار خوشه از روی مشخصات ظاهری.درجۀ خلوص بذور حاصله %100می باشد.
2) بذر پروردۀ دو (Breeder 2) یا بذر مادر : محصول هزار خوشه.
3) بذر پروردۀ سه (Breeder 3) یا سوپرالیت : محصول حاصل از پرورش دوم و درجۀ خلوص %99 می باشد.
4) بذر الیت (Elite) : محصول حاصل از سوپرالیت.
5) بذر مادری یا اصیل (Registered seed) :محصول حاصل از بذر الیت و درجۀ خلوص آن کمتر از الیت است.
6) بذر گواهی شده (Certified seed) :محصول حاصل از بذر مادری.
7) بذر مرغوب یا بذر تجاری (Commercial seed) :محصول حاصل از بذر گواهی شده.
کنترل کیفیت و گواهی بذر
بذر مهمترین نهاده کشاورزی است و دربردارنده پتانسیل ژنتیکی رقم برای تولید محصول بوده و در افزایش تولید و باروری محصولات کشاورزی نقش مهمی را برعهده دارد. لذا بذور برای بروز نقش خود بایددر سطح کیفی بالایی به کشاورز تحویل گردد.
کنترل کیفی بذر
مجموعهای از مراحل طراحی شده برای نگهداری و ایجاد بذر با کیفیت بالای ارقام جدید محصولات است، به گونهای که استانداردهای مناسب خلوص ژنتیکی و مشخصه رقم و خواص کیفی دیگر تضمین گردد. سیستم کنترل کیفی بذر باید نشان دهنده کلیه عملیات از تولید تا عرضه بذر را دربر گرفته و کیفیت فروخته شده به کشاورز را تضمین نماید.
مراحل کنترل کیفی
مراحل کنترل کیفی از طریق مراحل تکنیک اجرایی و قانونی بدست میآید. این مراحل شامل فعالیتهای چندی از آزاد کردن رقم تا تولید و عرضه بذر میشود. گواهی بذر، کنترل مزرعه و آزمون بذر به عنوان تنها ابزارهای کنترل کیفی مورد توجه قرار دارند و از اجزاء ضروری مراحل تولید بذر بوده و نقش مهمی در حفظ کیفیت و ترویج استفاده از بذور اصلاح شده دارند. اگرچه گواهی بذر میتواند به صورت اجباری و اختیاری باشد و توسط شرکتهای گواهی کننده دولتی، تعاونیها یا تولید کنندگان بذر بکار گرفته شود، اما در ایران به دلیل آنکه اکثر محصولات اصلی توسط نهادهای دولتی تقسیم میشوند، گواهی بذر به صورت اجباری با مراحل مشخص پیگیری میشود. در ایران طبق min که شامل 98%=p و 85%=i و 1%=m است، بذر گواهی میشود.
کنترل کیفیت بذر
شامل موارد ذیل است:
کنترل مجری؛
بازرسی مزارع تولید بذر؛
تجزیه بذر در آزمایشگاه؛
حمایت قانونی از کنترل کیفیت.
بازرسی مزارع
بازرسی مزارع در کنترل کیفیت بذر حائز اهمیت است. مهمترین فرصت جهت مشاهده و اندازهگیری کیفیت گیاهان تولید کننده بذر است. مزارع بذری جهت تعیین خلوص فیزیکی ـ ژنتیکی و عاری بودن از آلودگی به بیماریها و علفهای هرز مورد بازرسی قرار میگیند. در بازرسی مزارع بذری کیفیت مزارع با استانداردهای مورد نیاز که توسط قانون مشخص شده است، مقایسه میشود. از جمله آلودگیهای مزارع بذری میتوان به این موارد اشاره کرد:
گیاهان خارج از تیپ و سایر واریتهها؛
سایر محصولات؛
علفهای هرز غیرمجاز؛
گیاهان بیمار.
تعداد و زمان بازرسی مزارع
تعداد دفعات بازدید با توجه به طبقه بذر انجام میشود و هرچه به طبقه بذر بالاتر نزدیکتر میشویم، باید تهداد بازدیدها بیشتر شود. به طور کلی مهمترین مراحل بازدید به قرار زیر است:
الف) قبل از دوره گلدهی ب) دوره گلدهی
ج) قبل از برداشت د) زمان برداشت
روش بازرسی مزارع به 2 صورت زیر انجام میگیرد:
نمای کلی مزارع: برای مشخص کردن نمای کلی مزارع در تمام مزرعه قدم میزنیم و کل مزرعه را مشاهده میکنیم.
نمونهگیری: برای تعیین اینکه مزرعه بذری استاندارد را شامل میشود یا خیر (برررسی جزئیات را بازرسی مزرعه با استفاده از نمونه میگویند)، جزئیات آلودگی در اینجا شمارش شده و ثبت میشود، سپس استانداردهای مزرعه مقایسه میکنند.
تست بذر در آزمایشگاه
پس از کنترل نهایی و صدور گواهی برای مزرعه و بذر، بذور در انبارها نمونهگیری شده و جهت تعیین کیفیت به آزمایشگاه هدایت میشوند تا اینکه آزمایشات خلوص فیزیکی، رطوبت، قوه نامیه و سلامت آن ها مشخص شود. از ابزارهای لازم جهت تستهای آزمایشگاهی ژرمیناتور، ترازوی حساس، باد دهنده، مقسم، آون و بوجاری میباشد.
به طور کلی هدف از کنترل و گواهی بذر را میتوان به این صورت بیان کرد:
حفظ خصوصیات و صفات ژنتیکی و خلوص ارقام اصلاح شده بذور محصولاتی است که مشخصات بهتری نسبت به محصولات مشابه خود دارا میباشد و استفاده از این بذور توسط کشاورزان باعث افزایش محصول و بالا رفتن درآمد زارعین میگردد.
برای تهیه و توزیع بذور تکثیری اجرای نکات زیر الزامی است:
انتخاب زمین: انتخاب زمین هم دارای خصوصیاتی است که از جمله آن میتوان به این موارد اشاره کرد: در انتخاب زمین، زمین موردنظر باید نزدیک آسفالت باشد و آب و هکتار مورد نیاز برای کشاورزی را داشته باشد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 117
فصل اول
اندازه گیری1-تاریخچه اندازه گیری در جهان
سابقه اندازه گیری به عهد باستان باز می گردد و می توان آن را به عنوان یکی از قدیمی ترین علوم به حساب آورد .
در اوایل قرن 18 جیمز وات (JAMES WATT) مخترع اسکاتلندی پیشنهاد نمود تا دانشمندان جهان دور هم جمع شده یک سیستم جهانی واحد برای اندازه گیریها به وجود آورند . به دنبال این پیشنهاد گروهی از دانشمندان فرانسوی برای به وجود آوردن سیستم متریک (METRIC SYS) وارد عمل شدند .
سیستم پایه ای را که دارای دو استاندارد یکی «متر» برای واحد طول و دیگری «کیلوگرم» برای وزن بوده ، به وجود آوردند . در این زمان ثانیه (SECOND) را به عنوان استاندارد زمان (TIME) و ترموسانتیگراد را به عنوان استاندارد درجه حرارت مورد استفاده قرار می دادند .
در سال 1875 میلادی دانشمندان و متخصصات جهان در پاریس برای امضاء قراردادی به نام پیمان جهانی متریک (INTERNATIONAL METRIC COMVENTION) دور هم گرد آمدند . این قرارداد زمینه را برای ایجاد یک دفتر بین المللی اوزان و مقیاسها در سورز (SEVRES) فرانسه آماده کرد. این مؤسسه هنوز به عنوان یک منبع و مرجع جهانی استاندارد پابرجاست .
امروزه سازندگان دستگاههای مدرن آمریکایی ، دقت عمل استانداردهای اصلی خود را که برای کالیبراسیون دستگاه های اندازه گیری خود به کار می برند ، به استناد دفتر
استانداردهای ملی (N.B.S)تعیین می نمایند .
لازم به یادآوری است دستگاه های اندازه گیری و آزمون به دلایل گوناگون از جمله فرسایش ، لقی و میزان استفاده ، انحرافاتی را نسبت به وضعیت تنظیم شده قبلی نشان می دهند .
هدف کالیبراسیون اندازه گیری مقدار انحراف مذکور در مقایسه با استانداردهای سطوح بالاتر و همچنین دستگاه در محدوده «تلرانس» اصلی خود می باشد .
تعریف اندازه گیری :
اندازه گیری یعنی تعیین یک کمیت مجهول با استفاده از یک کمیت معلوم و یا مجموعهای از عملیات ، با هدف تعیین نمودن تعداد یک کمیت .
صحت :
نزدیکی نتیجه انداره گیری یک کمیت را با میزان واقعی آن کمیت گویند ، این مقدار به صورت درصدی از ظرفیت کلی دستگاه می باشد .
رواداری :
حداکثر انحراف یک قطعه ساخته شده از اندازه خاص خودش را گویند .
دقت :
نزدیکی میزان تفاوت نتایج حاصل از چند اندازه گیری متوالی را مشخص می نماید . دقت دستگاه دلالت بر صحت دستگاه ندارد .
تکرارپذیری :
نزدیکی مقدار خروجیهای یک دستگاه در شرایطی که مقدار ورودی به دستگاه ، روش اندازه گیری شخص اندازه گیرنده ، دستگاه اندازه گیری ، محل انجام کار ، شرایط محیطی یکسان باشد .
دامنه و میزان تغییرات :
حداقل و حداکثر ظرفیت اندازه گیری یک دستگاه را محدوده آن دستگاه گویند .
خطای ثابت :
خطایی که به طور ثابت که در تمام مراحل دامنه اندازه گیری با دستگاه همراه می باشد که این خطا با کالیبره کردن دستگاه برطرف خواهد شد.
خطای مطلق :
نتیجه اندازه گیری یک دستگاه منهای مقدار واقعی اندازه برداشت شده را گویند .