انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

انواع فایل

دانلود فایل ، خرید جزوه، تحقیق،

حل معادلات عددی دیفرانسیل

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 220

 

پایا ن نامه کارشناسی

حل عددی معادلات دیفرانسیل

استاد راهنما:

دکتر جلال الدین ایزدیان

گرد آورنده:

زهرا سالاری

زمستان 1383

فهرست

مقدمه – معرفی معادلات دیفرانسیل 4

بخش اول – حل عددی معادلات دیفرانسیل معمولی 20

فصل اول – معادلات دیفرانسیل معمولی تحت شرط اولیه 20

فصل دوم – معادلات دیفرانسیل معمولی تحت شرایط مرزی 66

فصل سوم – معادلات دیفرانسیل خطی 111

بخش دوم – حل عددی معادلات دیفرانسیل جزئی 125

فصل اول – حل معادلات عددی هذلولوی 128

فصل دوم – حل معادلات عددی سهموی 146

فصل سوم – حل معادلات عددی بیضوی 164

فصل چهارم – منحنی های مشخصه 184

مقدمه

معرفی معادلات دیفرانسیل

معادله در ریاضیات وقتی با اسم خاص و صورت خاص می آید خود به تنهایی مسأله ای را نمایش می دهد که در آن می خواهیم مجهولی را بدست آوریم.

کاربرد معادله دیفرانسیل از نظر تاریخی با معرفی مفهوم های مشتق و انتگرال آغاز گردید. ساده ترین نوع معادله دیفرانسیل آن دسته از معادلاتی هستند که مشتق تابع جواب را داشته باشیم. که چنین محاسبه ای به پاد مشق گیری و انتگرال گیری نامعین موسوم است.

معادلات دیفرانسیل وابستگی بین توابع و مشتق های توابع را نشان می دهد. که از لحاظ تاریخی به طور طبیعی از زمان کشف مشتق به وسیله نیوتن ولایب نیتس آغاز می شود. (قرن هفدهم میلادی). که با رشد سریع علم و صنعت در قرن بیستم روشهای عددی حل معادلات دیفرانسیل مورد توجه قرار گرفتند که توسعه و پیشرفت کامپیوتر ها در پایان قرن بیستم



خرید و دانلود  حل معادلات عددی دیفرانسیل


دانلود مقاله مقدمه‌ای از معادلات دیفرانسیل معمولی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 37

 

P. 1 (M.K.Jain)

CHAPTER 6 . “Ordinary Differential Equations”

“Initial value Problems”

“INTRODUCTION”

«مقدمه‌ای از معادلات دیفرانسیل معمولی»

یک معادله دیفرانسیل معمولی هست رابطه‌ای بین یک تابع و مشتقل های آن و متغیرهای مستقل که به آنها بستگی دارند، فرم کلی از یک معادله دیفرانسیل معمولی عبارتست از (6.1) وقتی که تا مشتق مرتبه m ام تابع y موجود باشد، همچنین y و مشتقاتش تابعی از متغیر مستقل t خواهند بود، مرتبه یک معادله دیفرانسیل عبارتست از مرتبه بزرگترین مشتق موجود در آن، و درجه یک معادله دیفرانسیل عبارتست از درجه مشتق از مرتبه بالا که با دیگر مشتقات رابطه دارد.

اگر بین تابع متغیر y(t) با خودش و یا هر یک از مشتقاتش نتوان رابطه‌ی دقیق را بدست آورد. معادله به یک معادله خطی تبدیل می شود، فرم کلی یک معادله دیفرانسیل خطی از مرتبه m عبارتست از (6.2) که هر کدام از ها توابع شناخته شده ای هستند:

اگر معادله دیفرانسیل غیر خطی (6.1) از مرتبه m را بتوان به فرم (6.3) درآورد آن گاه معادله (6.3) نامیده می‌شود یک تابع اولیه از معادله دیفرانسیل (6.1) . به این فرم که بالاترین مرتبه مشتق عبارتست از رابطه‌ای بین مشتقات از مرتبه پایین‌تر و متغیرهای مستقل.

«مسائل مقدار اولیه»

یک راه حل عمومی برای یک معادل دیفرانسیل عادی مانند (6.1) هست یک رابطه‌ای بین y و t و m مقادیر دلخواه ثابت، که معادله را مورد قبول قرار می‌دهند در حالی که محتوی مشتقات نمی شود. این راه حل شاید یک رابطه ضمنی به فرم (6.4) یا یک تابع صریح برحسب t به فرم (6.5) باشد.

این m مقادیر دلخواه ثابت می تواند تعیین شود بوسیله شرایط m گانه به فرم (6.6)

در ابتدا نامیده می شود شرایط اولیه؛ نقطه نامیده می شود نقطه اولیه. معادله دیفرانسیل (6.1) به همراه شرایط اولیه موجود در (6.6) نامیده می شود یک مسأله مقدار اولیه.

اگر این m شرایط تعیین شده باشند بوسیله بیشتر از یک نقطه که تعیین کرده‌اند m مقادیر ثابت دلخواه در راه حل عمومی (6.4) در این صورت نامیده می شود شرایط مرزی (کرانی)، معادله دیفرانسیل (6.1) به همراه شرایط مرزی شناخته شده است به عنوان یک مسأله مقدار مرزی.

یک معادله دیفرانسیل (6.3) با شرایط اولیه (6.6) شاید نوشته شود به عنوان یک سیستم معادل (هم ارز) از یک معادله دیفرانسیل مقادیر اولیه به فرم زیر:

 

 

که در نشانه گذاری (نمادسازی) برداری شده اند.

 

که و

بنابراین، روش های حل مسأله مقدار اولیه ابتدایی (6.8) و شاید کاربرد داشته باشد در حل مسائل مقدار اولیه (6. و مسأله مقدار اولیه (6.3) .

مثال (6.1) : تبدیل کنید مسأله مقدار اولیه مرتبه دوم زیر را به مسائل مقدار اولیه مرتبه اول (؟)

؛

حل. قرار می دهیم:

 

بنابراین: و . و

و

و

و و

و و

مثال (6.2) تبدیل کنید سیستم زیر را از دو معادله مرتبه 3 به یک سیستم با شش معادله مرتبه 1 .

؛

؛

حل. جانشین های زیر را پدید می آوریم:

 

 

 

 

 



خرید و دانلود دانلود مقاله مقدمه‌ای از معادلات دیفرانسیل معمولی


دانلود مقاله معادلات فرد هولم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

1- معادلات فرد هولم

شباهت ها با جبر ماتریسی: سه معادله انتگرال زیر را در نظر بگیرید

 

 

 

حدود تغییرات انتگرال گیری و تعریف توابع شامل است. حدود انتگرال گیری را تا لازم نباشند ذکر نمی کنیم. قبل از اینکه جواب، این معادلات را مطرح کنیم بهتر است که تقریب هایی ساده برای آنها بدست آوریم، سپس تقریب ها را مورد بحث قرار دهیم. برای این کار می توانیم ایده ای از خواص معادلات انتگرال را بدست آوریم، هر چند عموماً این خواص را به جای اثبات فقط معین می کنیم. در اینجا فرض می کنیم که معادلات ناتکین هستند.

فرض کنید یک عدد صحیح باشد و q,p اعداد صحیح مثبت کمتر از باشند. قرار می دهیم: .

با میل به سمت بی نهایت و h به سمت صفر، به درستی انتظار داریم که تقریب بهتر و بهتر شود.

 

اکنون ، تقریبی برای است و در نتیجه مجموعه معادلات زیر

(4-2)

(5-2)

(6-2)

به ترتیب تقریب هایی برای معادلات انتگرال (1-2)، (2-2)و(3-2) هستند.

معادلات (4-2)،(5-2)و(6-2) را می توان به ترتیب، به صورت ماتریسی بازنویسی کرد.

 

 

 

که در آن K ماتریس مربعی با درایه های به ترتیب ماتریس های ستونی با درایه , هستند.

اکنون رفتار این معادلات ماتریسی را در نظر بگیرید. معادله (7-2) یک جواب یکتا دارد

مشروط براینکه K یک ماتریس وارون پذیر باشد. در هر حال اگر Kوارون پذیر باشد، رتبه K از مرتبه آن کوچکتر است و برخی سطرهای آن به طور خطی مستقل خطی از سطرهای دیگر هستند. اگر همین رابطه بین درایه های متناظر در برقرار باشد، تعداد نامتناهی از جوابهای نایکتا موجود است. اگر این چنین نباشد، معادلات ناسازگارندو جوابی وجود ندارد. بنابراین امکان دارد معادله (1-2) یا جواب یکتا داشته باشد، یا بی نهایت جواب، یا بدون جواب.

اکنون معادله (8-2) را به صورت زیر بازنویسی می کنیم

 

اگر K وارون پذیر باشد، این معادله بردار ویژة و مقدار ویژه غیر صفر وابسته به آن دارد. ممکن است فرض شود که همه مقادیر ویژه با هم متفاوت باشند. وقتی نباشند تعدیل مناسبی را می توان بر نظریه اعمال کرد. اگر ماتریس وارون ناپذیر باشد و رتبه باشد و n-m بردار ویژه متناظر با یک مقدار ویژه صفر وجود دارد. باید توجه شود که در حالت کلی بردارهای ویژه ، که با جوابهای بیان می شوند با یکی نیستند مگر اینکه ماتریس Kمتقارن باشد(در عبارت اخیر، اندیس T که در بالا قرار دارد ترانهاده را نشان می دهد). در هر حال، مقادیر ویژه همیشه مشابه خواهند بود. برخی روابط تعامد را می توان به صورت زیر اثبات کرد: فرض کنیم بردارهای ویژه و متناظر با مقادیر ویژه غیرصفر، نابرابر و باشند،

 

که فقط در صورتی ممکن است که اگر

(10-2)

با انجام فرآیند متعامد سازی معمولی می توان این نتیجه را برای حالتی که مقادیر ویژه با هم برابر باشند بدست آورد. علاوه بر این همیشه ممکن است با تغییر مقیاس، رابطه زیر ساخته شود

 

وقتی کار نرمال سازی انجام شد، واضح است که

 

فرض کنیم یک ماتریس ستونی دلخواه با n درایه باشد.

فرض کنیم

 

پس

 

و همین طور

 

به عبارت دیگر

 

جواب مجموعه معادلات (9-2) را در نظر بگیرید

 

اگر مقدار ویژه مجموعه معادلات نباشد

 



خرید و دانلود دانلود مقاله معادلات فرد هولم


دانلود مقاله معادلات دیفرانسیل روش‌های تفاضل متناهی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 40

 

FINITE DIFFERENCE METHODS

«روش‌های تفاضل متناهی»

روابط واضح یا غیرواضح بین مشتقات و مقادیر توابع در نقاط آغازی وجود دارد.

نقاط آغازی بر روی [a,b] می تواند به وسیله [j= 1,2,…,N] و xj= a+jh به طوریکه ، ، در نظر گرفته شود.

این عبارت برای مشتقات تحت شرایط مقادیر تابعی است.

جواب مسأله مقدار مرزی یک تفاضل متناهی بوسیله جای‌گذاری معادله دیفرانسیل در هر نقطه آغازین به وسیله یک معادله تفاضلی بدست می آید.

با در نظر گرفتن شرایط مرزی در معادلات تفاضلی، سیستم جبری معادلات مورد حصول حل می شود، این یک جواب عددی تخمینی برای مسأله مقدار مرزی بدست می دهد.

- Linear Second Order Differential Equations

[معادلات دیفرانسیل خطی مرتبه دوم] ‍[صفحه 5, 4 ]

به معادله دیفرانسیل مرتبه دوم زیر توجه می کنیم:

، (46)

در رابطه با شرایط مرزی نوع اول: ، (47)

مقدار قطعی u(m) از با مشخص شده و مقدار تقریبی آن با ، با استفاده از سریهای تیلورها می توانیم مشخص کنیم که:

( .42)

به طوری که و

(49)

به طوری که

ما فرض کردیم که پیوستگی بدین صورت است:

 

به طوری که .

با در نظر گرفتن شرایط در 48 ، 49 و جایگذاری در 46 ، تفاضل تقریبی متناهی معادله دیفرانسیل مذکور در به صورت زیر است:

( .50)

شرایط مرزی ( .42) به صورت زیر تبدیل می شود:

( .51)

پس از ضرب با ، ( .50) می تواند به صورت زیر نوشته شود:

و ( .52)

به طوری که:

و و

سیستم ( .52) در نوشتار ماتریسی، پس از لحاظ شرایط مرزی، تبدیل می‌شود به:

( .53) Au=b

به طوری که:

 

 

حل سیستم معادلات خطی ( .53) جواب تفاضل متناهی معادله دیفرانسیل ( .46) را ارائه می دهد که پاسخگوی شرایط مرزی مدنظر است.

اشتباه بریدگی داخلی. (p.565) (خطای برش)

غلط بریدگی داخلی از معادله ( .52) بوسیله

( .54)

نشان داده می شود. به طوری که

بسط هر شرط در طرف اول معادله ( .54) در سری تیلور آن مول ، بدست می دهد:

( .55)

به طوری که .

بنابراین روش مذکور، روش حل معادله مرتبه دوم می باشد.

شرایط مرزی اشتقاقی: (p.596)

هم اکنون توجه خود را به شرایط مرزی نوع سوم معطوف می کنیم:

 

( .56)

تفاضل تقریبی معادله دیفرانسیل ( .46) در گره‌های داخلی j=1,2,…,N ، بوسیله معادله ( .52) داده شده که دارای N+2 مجموع در N معادله می‌باشد. هم اکنون ما نیاز داریم دو یا چند معادله متناظر برای شرایط مرزی ( .56) بیابیم.

با حذف شرایط در ( .48) ، تفاضل تقریبی متناهی ( .56) به صورت زیر می باشد:

در : یا



خرید و دانلود دانلود مقاله معادلات دیفرانسیل  روش‌های تفاضل متناهی


دانلود مقاله کاربرد روش L تقریب در معادلات انتگرال تکین

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

- کاربرد روش L1 – تقریب در معادلات انتگرال تکین

1- مقدمه: معادلات انتگرال را می‌توان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار می‌دهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح می‌دهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه می‌شود.

2- مقدمات ریاضی :

به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت

 

در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را می‌توان به صورت زیر فرمول بندی کرد:

تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.

در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :

 

برقرار باشد.

جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست می‌آید:

 

در آن صورت مساله تقریب را می‌توان بر حسب LP- نرم به صورت:

 

بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که می‌توان عبارت

 

را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس می‌توان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.

برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.

در این مرحله دو تفسیرزیر ضروری اند:

مقادیر مخلتف P را می‌توان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر می‌شود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر می‌شود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس می‌شد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار می‌گیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمی‌شویم.



خرید و دانلود دانلود مقاله کاربرد روش L تقریب در معادلات انتگرال تکین